
Distances in 𝑹𝟑 

 

Last time we figured out the (parametric) equation of a line and the (scalar) equation of a plane: 

Definition: The equation of a line through point 𝑃(𝑥0, 𝑦0, 𝑧0) with directional vector �⃗� =< 𝑣1, 𝑣2, 𝑣3 > 

is: 

𝑙(𝑡) = 𝑃 + 𝑡�⃗� =< 𝑥0 + 𝑡 𝑣1, 𝑦0 + 𝑡 𝑣2, 𝑧0 + 𝑡 𝑣3 > 

 

 

 

Definition: The equation of a plane with normal vector �⃗⃗� =< 𝑎. 𝑏. 𝑐 > is: 

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 

where the number d depends on the point that the plane should include. 

 

 

We discussed how to: 

 Find out if a point is on a line (set them equal, see if you can find a t that works for all 3 equations) 

 Find out if a point is on a plane (plug in the x,y,z values of the point into the equation of the plane) 

 Find the intersection of a line and a plane  (plug in components of line into plane, solve for t) 

 Find the intersection of two lines (try to solve three equations with two unknowns if possible) 

 Find the intersection of two planes (we actually did not do this yet :) 

So, turns out we did not solve the last problem yet, so here we go: 

Intersection of Two Planes 

If two planes are parallel (i.e. their normal vectors are  

parallel), then they don’t intersect. Otherwise they  

intersect in a line, so we need to find the point P and  

the directional vector �⃗� of that line. The vector �⃗� is  

part of the first plane, so it is perpendicular to its  

normal vector. But �⃗� is also part of the second plane,  

so it is also perpendicular to that normal vector. Hence,  

�⃗� is perpendicular to both normal vectors, which means  

that �⃗� is (parallel to) the cross product of both normal  

vectors: �⃗� = �⃗⃗�1 × �⃗⃗�2.  

That leaves us to find any point P(x, y, z) on that line. The line, somewhere, will cross the xy-plane, so we can 

assume that its z-coordinate is zero. So, we have a point P(x, y, 0) that is part of both planes. That means that it 



has to satisfy two equations in two unknowns (since we could assume z = 0). We can solve that system and we 

have our point! Note that we could have set y = 0 and worked out the missing x and z coordinates, or x = 0 and 

worked out y and z. We would get different points, of course, but the resulting lines would be the same. 

Example: Find the intersection of the planes 𝑥 − 𝑦 + 2𝑧 = 3 and 𝑥 + 2𝑦 − 3𝑧 = 0 

The planes have normal vectors 𝑛1 =< 1, −1,2 > and 𝑛2 =< 1,2, −3 >. They are not parallel, so the planes are 

not parallel, either. Thus, there is a line 𝑙(𝑡) = 𝑃 + �⃗�𝑡 of intersection. As discussed above: 

𝑣 = 𝑛1 × 𝑛2 = |
𝑖 𝑗 𝑘
1 −1 2
1 2 −3

| =< 3 − 4, −(−3 − 2), 2 + 1 >=< −1,5,3 > 

To find a point on that line, we may assume that z = 0. Thus, we get the system of equation 

   𝑥 − 𝑦 = 3
𝑥 + 2𝑦 = 0

 

Multiply the first equation by 2 and add that to the second one gives 3𝑥 = 6 or 𝑥 = 2. But then 𝑦 = −1 so that 

the point is 𝑃(2, −1,0). Putting this point together with the vector �⃗� we worked out before gives the line of 

intersection 𝑙(𝑡) = (2, −1,0) + 𝑡 < −1,5,3 >=< 2 − 𝑡, −1 + 5𝑡, 3𝑡 >. 

We can actually (and pretty easily) check answer. We’re saying that the intersection of the planes 𝑥 − 𝑦 + 2𝑧 =

3 and 𝑥 + 2𝑦 − 3𝑧 = 0 is the line < 2 − 𝑡, −1 + 5𝑡, 3𝑡 >, and we know how to check if a line is on the plane: 

plug in 𝑥 = 2 − 𝑡, 𝑦 = −1 + 5𝑡, 𝑧 = 3𝑡 into the first planes gives: 

𝑥 − 𝑦 + 2𝑧 = (2 − 𝑡) − (−1 + 5𝑡) + 2(3𝑡) ≡ 3 

for all t, and plugging the same coordinates into the second plane again gives a true identity for all t: 

𝑥 + 2𝑦 − 3𝑧 = (2 − 𝑡) + 2(−1 + 5𝑡) − 3(3𝑡) ≡ 0 

Now that we have gotten everything possible out of the “intersection” questions, we will move on to the next 

(and last) topic in this chapter. 

Distances between Points, Lines, and Planes 

Next, we will determine distances. In particular, we want to compute: 

 Distance between two points 

 Distance between a point and a plane 

 Distance between a point and a line 

 Distance between a line and a plane 

 Distance between two lines 

 Distance between two planes 

The first question is obvious and we have covered it quite some time ago: if 𝑃(𝑥1, 𝑦1, 𝑧1)  and 𝑄(𝑥2, 𝑦2, 𝑧2) 

𝑑(𝑃, 𝑄) = ||𝑃𝑄⃗⃗⃗⃗ ⃗⃗ || = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2 

That was easy. Next, let’s look at a plane and a point (not on the plane) 



 

To find the distance between point P and the plane we will use the projection formula. In other words: 

 Find an arbitrary point 𝑄on the plane 

 Find the vector 𝑃𝑄⃗⃗⃗⃗ ⃗⃗  

Then the distance d is the length of the projection on 𝑃𝑄⃗⃗⃗⃗ ⃗⃗ onto the normal vector �⃗⃗� (that’s a rather clever way of 

using the projection formula)! 

 

 

 

In other words:  

𝑑 = ‖𝑝𝑟𝑜𝑗�⃗⃗�(𝑃𝑄⃗⃗⃗⃗ ⃗⃗ )‖ =
⌈�⃗⃗� ∙ 𝑃𝑄⃗⃗ ⃗⃗ ⃗⃗ ⌉

‖�⃗⃗�‖
 

To see a video that explains this again, check out https://www.youtube.com/watch?v=HW3LYLLc60I 

Example: Find the distance between plane 𝑥 + 2𝑦 + 3𝑧 = 4 and the point 𝑃(3,2,1) 

We need any point Q on the plane. Setting y = 0 and z = 0 gives the point Q(4, 0, 0) on the plane. Then we find 

the vector 𝑃𝑄 = (4,0,0) − (3,2,1) =< 1, −2, −1 >. Then the distance we want is the length of the projection of 

𝑃𝑄 =< 1, −2, −1 > onto the normal vector of the plane 𝑛 =< 1,2,3 >: 

𝑑 =
| < 1,2,3 >∙< 1, −2, −1 > |

‖< 1,2,3 >‖
=

|1 − 4 − 3|

√1 + 22 + 32
=

6

√14
 

We have to believe that the answer is correct, because it is difficult to verify the answer geometrically by 

drawing pictures in 3D. But if we take special planes and points, then we can easily see the answer and then use 

it to verify our formula. For example, find the distance between the xy-plane and the point P(4,3,5). It is easy to 

see that the distance here is 5, but what does our formula say? The equation of the xy plane is, simply, z = 0, 

which has the normal vector v = <0, 0, 1>. An arbitrary point on the xy-plane is Q(2, 3, 0) (or really any point 

whose z-coordinate is 0. Thus, according to our formula, the distance is: 

𝑑 =
| < 0,0,1 >∙ 𝑃𝑄

|| < 0,0,1 > ||
=

| < 0,0,1 >< −2,0, −5 > |

1
= 5 

as it is supposed to. So, we verified our formula for this special case. 

Here is another example: Use the above formula to verify that the distance between the point P(3,1,-2) and the 

plane x +4y + 3z = 1 is zero. Then explain this answer geometrically. Hint: what is special about the point P(3,1,-2) 

in relation to the plane x + 4y + 3z = 1? 

We can actually get an easy-to-use formula from the above equation: take a point 𝑃(𝑥0, 𝑦0, 𝑧0) and a plane 

𝑎𝑥 +  𝑏𝑦 +  𝑐𝑧 +  𝑑 =  0. Pick some point 𝑄(𝑥1, 𝑦1, 𝑧1) on the plane (which of course means 𝑎𝑥1  +  𝑏𝑦1  +

https://www.youtube.com/watch?v=HW3LYLLc60I


 𝑐𝑧1  = − 𝑑). Then the vector 𝑃𝑄⃗⃗⃗⃗ ⃗⃗  = < 𝑥1 – 𝑥0, 𝑦1 – 𝑦0, 𝑧1 – 𝑧0 > and according to our formula we have the 

distance as 

𝑑 =
|�⃗⃗� ∙ 𝑃𝑄⃗⃗ ⃗⃗ ⃗⃗ |

||�⃗⃗�||
=

|𝑎 (𝑥1 − 𝑥0) + 𝑏(𝑦1 − 𝑦0) + 𝑐(𝑧1 − 𝑧0)|

√𝑎2 + 𝑏2 + 𝑐2
=

|𝑎𝑥1 + 𝑏𝑦1 + 𝑐𝑧1 − (𝑎𝑥0 + 𝑏𝑦0 + 𝑐𝑧0)|

√𝑎2 + 𝑏2 + 𝑐2
 

But we already determined that 𝑎𝑥1 + 𝑏𝑦1 + 𝑐𝑧1 = −𝑑 so that:  

Theorem: The formula for the distance between plane 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 and the point 

𝑃(𝑥0, 𝑦0, 𝑧0) is: 

𝑑 =
|𝑎𝑥0 + 𝑏𝑦0 + 𝑐𝑧0 + 𝑑|

√𝑎2 + 𝑏2 + 𝑐2
 

Example: Use this formula to find the distance between plane 𝑥 + 2𝑦 + 3𝑧 = 4 and the point 𝑃(3,2,1): 

𝑑 =
3 + 2 ∗ 2 + 3 ∗ 1 − 4

√12 + 22 + 32
=

6

√14
 

That answer matches the previous answer, as it should - always good! As it turns out, we can use this formula to 

solve a 2D problem: 

Theorem: The distance between a line 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0 in 𝑅2 and a point 𝑃(𝑥0, 𝑦0) in 𝑅2 is: 

𝑑 =
|𝑎𝑥0 + 𝑏𝑦0 + 𝑐|

√𝑎2 + 𝑏2
 

This is simply the previous formula reduced by one dimension. The above formula also helps to find distances 

between two planes and between a line and a plane. 

Find the distance between two planes: first, determine if the  

planes are parallel. If not, their distance is zero. Why? Otherwise,  

find any point 𝑃(𝑥0, 𝑦0, 𝑧0) on the second plane. Because the  

planes are parallel, the distance between the two planes is then  

given by the distance of that point to the first plane, for which the  

above formula applies. 

Similarly, you can make up a recipe to find the distance between a line and a plane – do it. 

Examples: Here are a few examples. Remember to first check if the objects are parallel or not. 

 Distance between 𝑥 − 𝑦 + 2𝑧 = 1 and −2𝑥 + 2𝑦 − 2𝑧 = 4 

 Distance between 2𝑥 + 3𝑦 − 𝑧 = 3 and 4𝑥 + 6𝑦 − 2𝑧 = 5 

 Distance between x + y + 2z = 0 and < 1 − 2𝑡, 3 + 4𝑡, 3 − 𝑡 > 

 Distance between 2𝑥 + 3𝑦 − 𝑧 = 0 and < 1 + 3𝑡, 2 + 2𝑡, 3 + 𝑡 > 

 

That leaves us with figuring out the distance between a point and a line in 3D and the distance between two 

lines. The formulas/procedures are getting rather complicated and are include here for completeness only, and 

without proof.  First things first: 



Theorem: The distance between point 𝑄(𝑥0, 𝑦0, 𝑧0) and the line 𝑙(𝑡) = 𝑃 + 𝑣𝑡 is 

||𝑃𝑄⃗⃗ ⃗⃗ ⃗⃗ × �⃗�||

||�⃗�||
 

 

Finally, consider two lines in 𝑅3. If they intersect, their distance was clearly zero. If they don’t intersect, use the 

following procedure to find their distance.  

Theorem: To find the distance between two non-intersecting lines, compute the cross product of the 

two directional vectors and find a point P one the first line as well as a point Q on the second line. Then 

the distance between both lines is the length of the projection of the vector 𝑃𝑄⃗⃗⃗⃗ ⃗⃗  onto the cross product 

of 𝑣1 × 𝑣2. 

 

 

 

 

Example: Find the distance between the point 𝑄(1,0,3) and the line 𝑙(𝑡) =< −1 − 𝑡, 3𝑡, 2 > as well as the 

distance between that line and the line 𝑙2(𝑡) =< 3 + 4𝑡, 2 + 3𝑡, 1 + 𝑡 >. 

The line 𝑙(𝑡) =< −1 − 𝑡, 3𝑡, 2 > goes through point 𝑃(−1,0,2) with direction 𝑣 =< −1,3,0 > so that according 

to the above formula we have  

𝑑 =
||𝑃𝑄 × 𝑣||

||𝑣||
=

|| < 2,0,1 >×< −1,3,0 > ||

|| < −1,3,0 > ||
=

|| < −3, −1,6 > ||

|| < −1,3,0 > ||
=

√46

√10
 

To find the distance between the two lines, we need 𝑣1 × 𝑣2 =< −1,3,0 >×< 4,3,1 >=< 3,1, −15 >. We take 

𝑃(−1,3,2) on line 1 and 𝑄(3,2,1) on line 2 so that, according to the recipe above: 

𝑑 = ||𝑝𝑟𝑜𝑗<3,1,−15>(< 4, −1, −1 >) =
|< 3,1, −15 >∙< 4, −1, −1 >|

|| < 3,1, −15 > ||
=

12 − 1 + 15

√235
=

26

√235
 

 

That’s it, we are done with distances, and in fact done with the entire chapter 11. Recall that we covered so far 

in this Calc 3 class: 

 we started with points, spheres, and sheets in R^3 

 vectors: add, subtract, multiply by scalar, length 

 dot product: angles, perpendicular vector, projection 

 cross Product: perp. to a and b 

 lines: vector equation, parallel, perpendicular 

 planes: scalar equation with normal vector 

 intersections: point on line, point on plane, line and line, line and plane, plane and plane 

 distances: points, points and lines, points and planes, lines and lines, lines and planes, plane and plane 



 
 
 

 


