Summary 6: Lines, Planes, and Intersections

Lines Parametric equation of a line though point P with directional vector \vec{v} is: $\begin{aligned} l(t)=P_{0}+t \vec{v} & =<p_{1}, p_{2}, p_{3}>+t<v_{1}, v_{2}, v_{3}>= \\ & =<p_{1}+t v_{1}, p_{2}+t v_{2}, p_{3}+t v_{3}> \end{aligned}$	$\begin{aligned} & \text { Eq. of line through } P(1,3,-2) \text { and } \\ & Q(4,2,1) \text { : vector } \vec{v}=\overrightarrow{P Q}= \\ & Q-P=<3,-1,3>\text { so that } l(t)= \\ & =(1,3,-2)+t<3,-1,3>= \\ & =<1+3 t, 3-t,-2+3 t> \end{aligned}$
Planes	
A normal vector to a plane is perpendicular to every vector in the plane.	Normal vector of plane $2 x-y+z=$ 9? $\vec{n}=\langle 2,-1,1\rangle$
The equation of a plane with normal vector $\vec{n}=\langle a, b, c>$ through the point $P\left(x_{0}, y_{0}, z_{0}\right)$ is:	Equation of plane through $P(1,2,0)$, $Q(2,1,1)$, and $R(0,1,0)$? Normal
$a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0$	vector $\vec{n}=\overrightarrow{P Q} \times \overrightarrow{P R}=<1,-1,1>\times$
or equivalently $a x+b y+c z+d=0$	$\begin{aligned} & <-1,-1,0>=<1,-1,-2>\text { so } \\ & \text { plane is }(x-1)-(y-2)-2 z=0 \\ & \text { or } x-y-2 z+1=0 \end{aligned}$

Intersections

Is point $P\left(x_{0}, y_{0}, z_{0}\right)$ on the line $l(t)=<p_{1}+t v_{1}, p_{2}+t v_{2}, p_{3}+t v_{3}>$ Solve $x_{0}=p_{1}+t v_{1}$ for t, check that t against other components

Is point $P\left(x_{0}, y_{0}, z_{0}\right)$ on the plane $a x+b y+c z+d=0$ Plug $x=x_{0}, y=y_{0}, z=z_{0}$ into plane's equation
Does line $l(t)=<p_{1}+t v_{1}, p_{2}+t v_{2}, p_{3}+t v_{3}>$ intersect the plane $a x+b y+c z+d=0$?

They do unless they are parallel (check if $\vec{v} \cdot \vec{n}=0$). To find intersection, plug $x=p_{1}+t v_{1}, y=p_{2}+t v_{2}, z=p_{3}+t v_{3}$ into equation of plane and solve for t
Do two lines l_{1} and l_{2} intersect?
Setup system of three equations $l_{1}(t)=l_{2}(s)$ with two unknowns. Solve first two for s and t, then check your answer against third equation

Do two planes intersect?

If they are parallel (check if $n_{1} \| n_{2}$, i.e. if $n_{1}=c n_{2}$) they don't. Otherwise they intersect in a line $l(t)=P_{0}+t \vec{v}$. The directional vector v is part of both planes, thus $v=n_{1} \times n_{2}$. To find point P_{0}, assume $z=0$ and solve remaining systems of two equations in two unknowns for x and y.

Is $P(1,2,3)$ on $<3-2 t, 2 t, 1-4 t>$? $1=3-2 t$ so that $t=1$. Does not check out, though, so no.
Is $P(1,2,3)$ on $2 x-y+3 z=5$?
$2 \cdot 1-2+3 \cdot 3=9$ checks out so yes Does $<2 t,-1+t, 3+4 t>$ intersect $3 x+2 y+z=13$? Substituting line into plane: $3(2 t)+2(-1+t)+(3+$ $4 t)=13$ simplifies to $t=1$. So intersect at $l(1)=<2,0,7>$

Do $l_{1}(t)=<1-t, 2+2 t, 3+t>$ and $l_{2}(t)=<t, 1-t, 3+2 t>$ meet $l_{1}(t)=l_{2}(s)$ implies $1-t=s, 2+$ $2 t=1-s, 3+t=3+2 s$. Thus $2+$ $2 t=1-(1-t)$ or $t=-2$, so $s=$ -3 . Does NOT check $3^{\text {rd }}$ eq $3+t=$ $3+2 \mathrm{~s}$ so lines do not intersect.

Do $x+y+z=1$ and $2 x-y+z=0$ intersect? $\vec{n}_{1}=<1,1,1>$ and $\overrightarrow{\mathrm{n}}_{2}=<2,-1,1>$. So $\vec{v}=\vec{n}_{1} \times \vec{n}_{2}=<$ $2,1,-3>$ and to find $P(x, y, z=0)$, solve $x+y=1$ and $2 x-y=0$.
Thus, $x=1 / 3$ and $y=2 / 3$. So

$$
l(t)=<\frac{1}{3}, \frac{2}{3}, 0>+<2,-1,1>t
$$

