Summary 5: Projection and Cross Product

Cross Product The cross product of $\vec{a}=<a_{1}, a_{2}, a_{3}>$ and $\vec{b}=<b_{1}, b_{2}, b_{3}>$ is: $\vec{a} \times \vec{b}=\left\|\begin{array}{ccc} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \end{array}\right\|=<a_{2} b_{3}-a_{3} b_{2},-\left(a_{1} b_{3}-a_{3} b_{1}\right), a_{1} b_{2}-a_{2} b_{1}>$	
Properties of Cross Product $\vec{a} \times \vec{b}$ is a vector (as opposed to $\vec{a} \cdot \vec{b}$, which is a scalar) $\vec{a} \times \vec{a}=0$ for any vector $\vec{a} \times \vec{b}$ is perpendicular to both vectors \vec{a} and \vec{b} $\begin{aligned} & \|\|\vec{a} \times \vec{b}\|\|=\|\|\vec{a}\|\|\| \| \vec{b}\| \|\|\sin (\theta)\| \\ & \vec{a} \times \vec{b}=0 \text { iff } \vec{a} \text { parallel to } \vec{b} \text { (but it is easier to check if } \vec{a}=c \vec{b}, \text { c scalar) } \end{aligned}$	
Lines Parametric equation of a line though point P with directional vector \vec{v} is: $\begin{aligned} l(t)=P_{0}+t \vec{v} & =<p_{1}, p_{2}, p_{3}>+t<v_{1}, v_{2}, v_{3}>= \\ & =<p_{1}+t v_{1}, p_{2}+t v_{2}, p_{3}+t v_{3}> \end{aligned}$	Eq. of line through $P(1,3,-2)$ and $Q(4,2,1)$: dir. vector $\vec{v}=\overrightarrow{P Q}=$ $Q-P=<3,-1,3>$ so that $l(t)=$ $=(1,3,-2)+t<3,-1,3\rangle=$ $=<1+3 t, 3-t,-2+3 t>$
Properties A line $l(t)$ is a one-dimensional object inside \boldsymbol{R}^{n} Two lines l_{1} and l_{2} are perpendicular if their directional vectors \vec{v}_{1} and \vec{v}_{2} are perpendicular; they are parallel if their directional vectors \vec{v}_{1} and \vec{v}_{2} are parallel. Two lines l_{1} and l_{2} intersect if there are number s and t such that $l_{1}(t)=l_{2}(s)$	$\begin{aligned} & l_{1}(t)=<1-t, 2 t, 3+2 t>\text { and } \\ & l_{2}(t)=<3+2 t, 1-3 t, 1+4 t>\text { are } \\ & \text { perpendicular, because: } \\ & v_{1}=<-1,2,2>\text { and } \\ & v_{2}=<2,-3,4>\text { so that } v_{1} \cdot v_{2}=0 \end{aligned}$

