Summary 5: Projection and Cross Product

Cross Product	
The cross product of $\vec{a}=< a_1, a_2, a_3>$ and $\vec{b}=< b_1, b_2, b_3>$ is:	$ <1,0,1> \times <1,2,-3> =$
$\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \end{vmatrix}$	$ \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & 1 \\ 1 & 2 & -3 \end{vmatrix} = $
$\vec{a} \times \vec{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \langle a_2b_3 - a_3b_2, -(a_1b_3 - a_3b_1), a_1b_2 - a_2b_1 \rangle$	$\begin{vmatrix} 1 & 2 & -3 \\ = < 0 - 2, -(-3 - 1), 2 - 0 > = < -2, 4, 2 > \end{vmatrix}$
Properties of Cross Product	
$\vec{a} imes \vec{b}$ is a vector (as opposed to $\vec{a} \cdot \vec{b}$, which is a scalar)	
$ec{a} imes ec{a} = 0$ for any vector	
$ec{a} imesec{b}$ is perpendicular to both vectors $ec{a}$ and $ec{b}$	
$\left \left \vec{a} \times \vec{b} \right \right = \left \left \vec{a} \right \right \left \left \vec{b} \right \right \sin(\theta) $	
$\vec{a} imes \vec{b} = 0$ iff \vec{a} parallel to \vec{b} (but it is easier to check if $\vec{a} = c\vec{b}$, c scalar)	
Lines	Eq. of line through $P(1,3,-2)$ and
Parametric equation of a line though point P with directional vector \vec{v} is:	$Q(4,2,1)$: dir. vector $\vec{v} = \overrightarrow{PQ} =$
$l(t) = P_0 + t \vec{v} = \langle p_1, p_2, p_3 \rangle + t \langle v_1, v_2, v_3 \rangle =$	Q - P = <3, -1,3 > so that $l(t) =$
$= \langle p_1 + tv_1, p_2 + tv_2, p_3 + tv_3 \rangle$	= (1,3,-2) + t < 3,-1,3 >=
	=< 1 + 3 t , 3 - t , -2 + 3 t >
Properties	$l_1(t) = <1-t, 2t, 3+2t > $ and
A line $l(t)$ is a one-dimensional object inside $I\!\!R^n$	$l_2(t) = <3 + 2t, 1 - 3t, 1 + 4t > are$
Two lines l_1 and l_2 are perpendicular if their directional vectors \vec{v}_1 and	perpendicular, because:
\vec{v}_2 are perpendicular; they are parallel if their directional vectors \vec{v}_1 and	$v_1 = <-1,2,2>$ and
$ec{v}_2$ are parallel.	$v_2 = <2, -3, 4 > \text{so that } v_1 \cdot v_2 = 0$
Two lines l_1 and l_2 intersect if there are number s and t such that	
$l_1(t) = l_2(s)$	