Summary 3: Vectors and Dot Product

Adding/ subtracting vectors algebraically:

If $\vec{v}=<v_{x}, v_{y}, v_{z}>$ and $\vec{w}=<w_{x}, w_{y}, w_{z}>$, then

- $\left.\vec{v}+\vec{w}=<v_{x}, v_{y}, v_{z}\right\rangle+\left\langle w_{x}, w_{y}, w_{z}\right\rangle=$

$$
=\left\langle v_{x}+w_{X}, v_{y}+w_{y}, v_{z}+w_{z}\right\rangle \text { and }
$$

- $\vec{v}+\vec{w}=\left\langle v_{x}, v_{y}, v_{z}\right\rangle-\left\langle w_{x}, w_{y}, w_{z}\right\rangle=$

$$
\left.=<v_{x}-w_{X}, v_{y}-w_{y}, v_{z}-w_{z}\right\rangle
$$

Basic Definitions:

Length or norm of vector $\vec{v}=<v_{x}, v_{y}, v_{z}>$ is:

$$
\|\vec{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}
$$

A unit vector \vec{u} is a vector with norm 1: $||\vec{u}||=\sqrt{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}}=1$
For any non-zero vector \vec{v} there is a vector $\vec{u}=\frac{1}{\|\mid \vec{v}\|} \vec{v}$ with the same direction and length

If $\vec{v}=\langle x, y\rangle$ is a two dimensional vector in polar coordinates, i.e. with length l and angle θ, then $x=l \cos (\theta)$ and $y=l \sin (\theta)$

The vectors $\overrightarrow{\boldsymbol{\imath}}=\langle 1,0,0\rangle, \overrightarrow{\boldsymbol{\jmath}}=\langle 0,1,0\rangle$, and $\overrightarrow{\boldsymbol{k}}=\langle 0,0,1\rangle$ are called the unit basis vectors. Every vector $\vec{v}=<v_{1}, v_{2}, v_{3}>$ can be written as $v=v_{1} \overrightarrow{\boldsymbol{\imath}}+v_{2} \overrightarrow{\boldsymbol{\jmath}}+v_{3} \overrightarrow{\boldsymbol{k}}$

The Dot Product

Definition: The dot product between $\vec{v}=<v_{1}, v_{2}, v_{3}>$ and $\vec{w}=<$ $w_{1}, w_{2}, w_{3}>$ is: $v \cdot w=v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}$.

Theorem: The dot product between two vectors is a scalar. It has the following properties:
(i) $\vec{v} \cdot \vec{v}=\|\vec{v}\|^{2}$, (ii) $\vec{v} \cdot(\vec{w}+\vec{z})=\vec{v} \cdot \vec{w}+\vec{v} \cdot \vec{z}$, (iii) $\vec{v} \cdot \vec{w}=\vec{w} \cdot \vec{v}$

Theorem: The dot product between two vectors gives, essentially, the (cosine of) the angle between them. Specifically:
$\frac{\vec{v} \cdot \vec{w}}{\|\vec{v}\|\|\mid \vec{w}\|}=\cos (\theta)$.
Corollary: Two vectors \vec{v} and \vec{w} are perpendicular iff $\vec{v} \cdot \vec{w}=0$

If $v=<1,2,3>$ and
$w=<-2,3,-1>$ then:
$v+w=\langle-1,5,2\rangle$
$v-w=\langle 3,-1,4>$
$\|<1,3,-2>\|=\sqrt{14}$
$u=<\frac{\sqrt{3}}{2}, 0, \frac{1}{2}>$ is a unit vector
If $v=\langle 1,3,-2\rangle$, then
$u=\frac{1}{\sqrt{14}}<1,3,-2>$ is unit vector
If v has length 2 and angle $\frac{\pi}{3}$, then $v=<2 \cos \left(\frac{\pi}{3}\right), 2 \sin \left(\frac{\pi}{3}\right)>$
$v=<1,-3,2>=\boldsymbol{i}-3 \boldsymbol{j}+2 \boldsymbol{k}$

$$
\begin{array}{r}
<1,3,-2><3,-2,-4> \\
=3-6+8=5
\end{array}
$$

Angle between $v=<-1,2,2>$ and $w=<3,-2,-4>$ is:
$\cos (\theta)=\frac{\langle 1,2,2\rangle \cdot<3,2,1>}{\sqrt{9} \sqrt{14}}=\frac{9}{\sqrt{126}}$
$<1,-4,0>$ and $<8,2,9>$ are perpendicular because $\langle 1,-4,0\rangle \cdot\langle 8,2,9\rangle=0$

