Math 2511: Calc lll - Practice Exam 3

1. State the meaning or definitions of the following terms:
a) vector field, conservative vector field, potential function of a vector field, volume, length of a curve, work,
surface area, flux of a vector field, triple integral
b) curl and divergence of a vector field F, gradient of a function
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g) What does it mean when a hne integral is independent of the path™? o\} g
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h) State the Fundamental Theorem of Line Integra'ls Make sure to know when it applies, and when it helps
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1) State Green’s Theorem. Make sure to know when it applies, and in what situation it helps.
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k) State Gauss’ Theorem. Make sure to know when it appliess, and in what situation it helps.
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Below are four algebraic vector fields and four sketches of vector fields. Match them.
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(1) F(x,y)=<x,y>,2) F(x,y)=<-y,x>,(3) F(x,y)=<x,1>,(4) F(x,y)=<Ly>
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b) Below are two vector fields.
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Say in the left vector ﬁeld above you integrate over a straight line from (0,-1) to (1,0). Is the integral positive,

negative, or zero?
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Which one is clearly not conservative, and why?
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How about if you integrate from (-2,1) to (2, 1)‘7
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How about from (-2,-1) to (2,-1)? S"SE de S 0
Y —

d) Below are two slices of a 3D surface submerged in a 3D vector field. Imagine the picture as extending outwards

of the paper. The normal vector shown is determined by the orientation of the surface. Is the flux . s F -7ds
positive, negative, or zero, for each surface?
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3. Are the following statements true or false:
a) Ifthe divergence of a vector is zero, the vector field is conservative. Vj

b) If F(x,y,z) is aconservative vector field then curl(F) =0 W"

c) Ifaline integral is independent of the path, then [f ¢ F-ndS =0 for every path surface S

d) Ifa vector field is conservative then IF . drﬁi) for every closed path C
c

e) ” dA gives the surface area of the region Rx

R

f) ” f(x,y)dA gives the volume of the region under the surface f{x,y) and over R, if fis positive.
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g) Il 0 dV gives the volume of Q §f

h) Can you apply the Fundamental Thegrem of line integrals fﬁr the function f(x,y,z) = xysin(z)cos(x’ + y*)?

No ((raee veths

i) Can you apply the Fundamental Theorem of line integrals for the vector field

F(x,y)=<6xy> =3x>,6x°y+3y° =7>? V,C" u)ﬁ"é‘ M‘a’zllwblgo YES

j) Can you apply Green’s theorem for a curve C, which is a straight line from (0,0,0) to (1,2,3)?

No (keaol coregd ciaar)

k) Can you apply Green’s theorem for a vector field F =< xy, yz, zx > and a closed surface S?
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1) Can you apply Gaussi\‘am(em frr a vector field F =j xy,yz,zx > and a surface S given by z = f(x,y)
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m) C ly Stokgf'sWeorem for 33D vector field an face S given by z = f(x,
S
Suppose that F'(x, y,z) =< x3yzz, x’z, xzy > is some vector field. Find, if possible
div(F, . o 5
a) div(E), divpe y g, x5,y =32yl 3
curl(F),

curl [ y2 2, X2 5,22 y) = [0, x y [ y - 2), -2xz(x? y - 1))
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curl(eurl®). qurl curl |6 y? 5, 4% 1, 2 y)=|-235, 2503 y-1), (322 y- 2

div(curl(F)), O"
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gm@dw)

grad(div(F))  graddiv[e y* z,x? 2,2 y} = [6x y* 2,67 yz, 32 y?)

b) grad., div., and curl of the vector field if appropriate for < x>, y2, zt >
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¢) grad., div., and curl of the vector field if appropriate for < cos(y)+ ycos(x),sin(x)—xsin(y),xyz >
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d) grad., div., and curl of the vector field if appropriate for f(x,y,z) = zIn(x* + y*)
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Decide which of the following vector fields are conservative. If a vector is conservative, find its potential function
a) F(x,y)=<2xy,x> >
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b) F(x,y)=<e" cos(y),e" sin(y)>

to
—
¢) F(x,y,z)=<sin(y),—xcos y,I >
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d) F(x,y,z)=<2xy,x +z°2zy >

Z @ < Xka* uxkx 1+
e) F(x, y) =< 6xy* —3x7,6x° y+3y -7>

B Ylne 3K X“WQMX"C’
) F(x, y) =< -2y’ sin(2x),3y" (I + cos(Zx) >
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g2) F(x,y,z)=<4xy+ z,2x* + 6y,2z>
&1 cod (Bl <OM0)

h) F(x,y,z)=< 4xy+zz,2x2 +6yz,2xz >
0 curl ldxy+2, 262 46y, 2x3)=|-6,0,0}

6. Evaluate the following integrals:
a) ” cos(x*)dA where R is the trlangular region bounded by y=0,y=x,and x = 1
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c) Ids , where C is the curve given by 7(t) =<t>,1+¢>, 0<¢ <2 (you might want to use Maple at some point)
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d) xydx whereC1sthecurveg1venby rt)y =<t >, 0<t<2
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e) Ixz — y+3ds where C is the circle r(t) =< 2cos(?),2sin(t) >, 0<t <7
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F[(2 cos(t))® - 2sin(t) + 3)2dt=107-8
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f) sz —y+3zds where C is a line segment given by r(¢) =<¢,2¢,3t >, 0<t<1

Cc
l‘n 7 9 \/1_
[|t*-2t+3]\/1+2“+3‘ dt:%:
vl

/‘/

g) jF-dr where F(x,y)=<y,x*> and C is the curve given by r(r)=<4—t4r—1t> >, 0<1<3
c

1 bl [ 6
rr[4t-t-;(—1)+(4-r)'(4-2njdt=f
vl '2%,,,

h) jF-dr where F(x,y) =< yz,x*,zy > and C is the curve given by r(¢) =<1-¢,3t,2—t> >, 1<t <3
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j) Find the surface integral JJ X—2y+zdS , where S is the surface z=10—2x + 2y such that x is between 0 and
S
2 and y is between 0 and 4.

”(r 24 (10-2x42 y))\/_dxdy

W



k) ” (x+ z)dS where S is the first-octant portion of the cylinder y* +z? =9 between x =0 and x =4
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. For some of the following line integrals there may be short-cut you can use to simplify your computations (but justify

your shortcut by quoting the appropriate theorem)
a) J-F -dr where F(x,y)=<e"cos(y),—e"sin(y) > and C is the curve r(t) =< 2cos(¢),2sin(z) >, 0<t <27
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b) Inyzdx + x°zdy + x* ydz where C is some smooth curve from (0,0,0) to (1,4,3)
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c) J-F dr where F(x, y) =<y’ +1,3xp” +1> and C is the upper half of the unit circle, from (1,0) to (-1,0)
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d) J‘F dr where F(x,y)=< y’x,3xy” > and C is the line segment from (-1,0) to (2,3).
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e) jy3dx + (x + 3xy )dy where C is thépath from (0,0) to (1,1) along the graph of y = x’ and from (1, 1) to (0,0)
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8. Green’s Theorem

a)

b)

c)

Use Green’s theorem to find IF -dr where F(x,y)=<3",x> +3xp° > and C is the circle with radius 3,

oriented counter-clockwise (You may need the double-angle formula for cos somewhere during your
computations, or use Maple)
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b
Evaluate ” dA where R is the ellipse XT + % =1 by using a vector field F'(x, y) =< —% ,g > and the

boundary C of the ellipse R. Note that we did this in class, it is a very special application of Green’s theorem.

Find the surface integral J.J-x —2y+zdS, where S is the surface z=10—2x + 2y such that x is between 0 and
s
2 and y is between 0 and 4.
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d) Evaluate the flux integral ”F ndS where F(x,y,z)=<x,y,z> and Sis x* + y° + Z =4
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) =< —y?,x,z? > and C is the fulve bounding the ellipse S £otKisting of the
2 and the cylinder x“ + y

g) (Evaluate [f, cugl(F) n dS where F(x,y, z) < X2, y2,xy > and S is the part of the sphere x* + y* + z*

:’ that lies insilinde 2y’ =1 a xy-plane. /
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9. Evaluate the following integrals. You can use any theorem that’s approprie&e: . m
h) J.nyzdx +x°zdy + x* ydz where C is a smooth curve from (0,0,0) to (1,4,3) = gkcm CI'] (‘;/ﬁ\v(,\(‘) ¥ {(, § “"v(/ﬂm(
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1) J. ydx + 2xdy where C is the boundary of the square with vertices (0,0), (0,2), (2,0), and (2,2)
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Lipse
i) jxyzdx +xydy , where C is given by r(f) =< 4cos(¢),2sin(¢) >, t between 0 and 2 Pi.
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k) Ixydx + xzdy where C is the boundary of the region between the graphs of y = x* and y = x.
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10. Prove that if F'(x, y,z) =<M(x,y,z), N(x, y,z), P(x,y,z) > is any vector field where M,N,P are twice
continuously differentiable then div(curl(F')) =0
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Use Green’s Theorem to prove that integrals of a conservative vector fields over closed curves are zero (assuming that
the closed curve encloses a simply connected region and all conditions of Green’s theorem are satisfied).
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