Math 2511: Calc Ill - Practice Exam 3
1. State the meaning or definitions of the following terms:

a) vector field, conservative vector field, potential function of a vector field, volume, length of a curve, work,
surface area, flux of a vector field, triple integral

b) curl and divergence of a vector field F, gradient of a function ( \‘
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g) What does it mean when a “line integral is independent of the path’;?)l g
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h) State the Fundamental Theorem of Line Integrals Make sure to know when it applies, and when it helps
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i) State Green’s Theorem. Make sure to know when it applies, and in what situation it helps.

d)

e

\



Tl Cox o dowh cune amnd T - <MBY o W vedhy
fuld Such W h purtiol o czmlmo:vvl

§¥ 7+ g@gax 1R T

j) State Stoke’s Theorem. Make sure to know when it applies, and in what situation it helps.
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k) State Gauss’ Theorem. Make sure to know when it appllé and in what situation it helps.
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Below are four algebraic vector fields and four sketches of vector fields. Match them.
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Q) F(Xy)=<XYyY>, F(X,y)=<-y,x>,(3) F(X,y)=<x1>,4) F(x,y)=<ly>
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b) Below are two vector fields. Which one is clearly not conservative, and why?
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c) Say in the left vector field above you integrate over a straight line from (0,-1) to (1,0). Is the integral positive,

negative, or zero? qwcl Vedin e, $°W"QW‘ Wﬂ@

How about if you integrate from (-2,1) to (2, 1)7
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How about from (-2,-1) to (2,-1)? Sl% Ql)( S @
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d) Below are two slices of a 3D surface submerged in a 3D vector field. Imagine the picture as extending outwards

of the paper. The normal vector shown is determined by the orientation of the surface. Is the flux || fs F -#idsS
positive, negative, or zero, for each surface?
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3. Are the following statements true or false:

a)
b)

c)

d)

€)

f)
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h)
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If the divergence of a vector is zero, the vector field is conservative. V

If F(X,Y,2z) isa conservative vector field then curl(F) =0 T
If a line integral is independent of the path, then ffs F -n dS =0 for every path surface S

If a vector field is conservative then IF -drfo for every closed path C
C

_[ J dA gives the surface area of the region Rx
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” f (X, y)dA gives the volume of the region under the surface f(x,y) and over R, if f is positive.
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Jif, dVv gives the volume of Q N

Can you apply the Fundamental Thegrem of line integrals f(ir the function f (X, y, z) = xysin(z) cos(x* + y*)?

No (proeef v

Can you apply the Fundamental Theorem of line integrals for the vector field

F(X,y) =< 6xy% —3x2,6X%y +3y? =7 >7? Mc“ Qm}‘ N‘KRWZIW Ygg

Can you apply Green’s theorem for a curve C, which is a straight line from (0,0,0) to (1,2,3)?

No (keepl coregd ctre)

Can you apply Green’s theorem for a vector field F =< xy, yz, zx > and a closed surface S?
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I) Canyou apply Gaussiﬂ)eotem for a vectoy field F, =< xy, yz, zx > and a surface S given by z = f(x,y)
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m) Can you apply Stoke’s theorem for a 3D vector field and a sr:rface S given by z = f(x,y)
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Suppose that F(X, Y, z) =< x®y?z, X%z, x°y > is some vector field. Find, if possible
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b) grad., div., and curl of the vector field if appropriate for < x*,y?,z° >
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c¢) grad., div., and curl of the vector field if appropriate for < cos(y) + ycos(x),sin(x) —xsin(y), xyz >
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d) grad., div., and curl of the vector field if appropriate for f(X,y,z) = zIn(x* + y?)
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Decide which of the following vector fields are conservative. If a vector is conservative, find its potential function
a) F(x,y)=<2xy,x*>
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b) F(x,y)=<e”cos(y),e”sin(y)>
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c) F(x,v,2z)=<sin(y),—xcosyl>
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d) F(x,V,z)=<2xy,x*+2°2zy >
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e) F(x,y)=<6xy®—3x*6x’y+3y*-7> q
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f) F(x, y) =< -2y’ sin(2x),3y* (L + cos(ZX) > g
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9) F(X,y,z)=<4xy+12,2x"+6y,22>
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h)y F(X,Y,2)=<4xy+ 2% 2x*+6Yyz,2x2 >

NQ’ curl fhxy+2, 202 +6yz, 2x3) = |61y, 0, 0}
6. Evaluate the following integrals:
a) ”COS(X )dA where R is the trlangular region bounded by y =0,y =x,and x = 1
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b) I J' x*y3dxdy
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c) Ids , where C is the curve given by r(t) =<t*1+t>, 0 <t <2 (you might want to use Maple at some point)

In |
f\/ﬂt):dtz\m-smh"(t})a

Ml

_



d)
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x’y%dx , where C is the curve given by rit) =<t%t*>, 0<t<2
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J.x2 — y+3ds where Cis the circle r(t) =< 2cos(t),2sin(t) >, 0<t<rx

r[(2 cos(t))* - 2sin(t) + 3)2dt = 10x -8
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sz —y+3zds where C is a line segment given by r(t) =<t,2t,3t >, 0<t<1
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F-dr where F(x,y)=<y,x? > and C is the curve given by r(t)=<4-t4t—t>>, 0<t<3
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jF-dr where F(X,Y) =< yz,x*,zy > and C is the curve given by r(t)=<1-1,3t,2—-t> >, 1<t<3
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Find the surface integral ” X — 2y +zdS , where S is the surface z =10—2x + 2y such that x is between 0 and
S
2 and y is between 0 and 4.
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K) ﬂ (x+ z)dS where S is the first-octant portion of the cylinder y? +z? =9 between x = 0 and x = 4
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7. For some of the following line integrals there may be short-cut you can use to simplify your computations (but justify
your shortcut by quoting the appropriate theorem)

a) IF -dr where F(x,y)=<e*cos(y),—e”sin(y) > and C is the curve r(t) =<2cos(t),2sin(t) >, 0<t <2z«
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b) _[ 2xyzdx + x*zdy + x*ydz where C is some smooth curve from (0,0,0) to (1,4,3)
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C) _[F -dr where F(x,y) =< y®+1,3xy” +1> and C is the upper half of the unit circle, from (1,0) to (-1,0)
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d) _[F -dr where F(x,y) =< y°x,3xy” > and C is the line segment from (-1,0) to (2,3).

MmN
e <0\ +C30)=
W .t _, B N‘c oo 7

<3y o « -1 232

. (% ("0 1 6ol 13 )bt 45

O
e) J.y3dx +(x®+3xy° )dy where C is thé path from (0,0) to (1,1) along the graph of y = x* and from (1, 1) to (0,0)
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8. Green’s Theorem

a) Use Green’s theorem to find IF -dr where F(x,y)=<y? x®+3xy® > and C is the circle with radius 3,

oriented counter-clockwise (You may need the double-angle formula for cos somewhere during your
computations, or use Maple)
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b) Evaluate “ dA where R is the ellipse XTer? =1 by using a vector field F(X,y) =< —%% > and the

R
boundary C of the ellipse R. Note that we did this in class, it is a very special application of Green’s theorem.

c) Find the surface integral ”x — 2y +zdS, where S is the surface z =10—2x + 2y such that x is between 0 and

2 and y is between 0 and 4
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d) Evaluate the fluxmtegralﬂF ndS where F(X,y,z)=<X,y,z> and Sis x* + Yy’ +z _4
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e) Evaluate jF dr where F(X,Y,z) =<z°,x?,y*> > and C is the boundary of the surface S given by

z=4-x>—y*and z >0, oriented counter-clockwise.
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f) Evaluate f F d7 where F(x, y z) =< —y?% x,z? > and C is the curve bounding the ellipse S consisting of the
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g) Evaluate ff. curl(F)ndS where F(x,y, z) =< xz,yz,xy > and S is the part of the sphere x* + y? + z? = 4
S.. that lies inside the cylinder x? + y? = 1 above the xy-plane.
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9. Evaluate the following integrals. You can use any theorem that's approprlzgte

h) j 2xyzdx+ x*zdy + x*ydz where C is a smooth curve from (0,0,0) to (1,4,3) gkcm Cl'] (,-/s‘»\v[,\(\] + {(, § o\mmw a’)
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i) J. ydx + 2xdy where C is the boundary of the square with vertices (0,0), (0,2), (2,0), and (2,2)
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L,

) jxyzdx+ x?ydy , where C is given by r(t) =< 4 cos(t),2sin(t) >, t between 0 and 2 Pi.
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k) _[ xydx + x°dy where C is the boundary of the region between the graphs of y = x* and y = X.
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10. Prove that if F(X,y,z) =<M(X,Y,2),N(X,Y,2),P(x,y,z) > is any vector field where M,N,P are twice
continuously differentiable then div(curl(F)) =0
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Use Green’s Theorem to prove that integrals of a conservative vector fields over closed curves are zero (assuming that
the closed curve encloses a simply connected region and all conditions of Green’s theorem are satisfied).
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