Math 2511: Calc III - Practice Exam 3

- 1. State the meaning or definitions of the following terms:
 - a) vector field, conservative vector field, potential function of a vector field, volume, length of a curve, work, surface area, flux of a vector field, triple integral
 - b) curl and divergence of a vector field F, gradient of a function
 - c) $\iint_R dA$ or $\iint_R f(x, y) dA$ or $\iiint_Q f(x, y, z) dV$
 - d) $\int_{C}^{R} ds$ or $\int_{C}^{R} f(x, y) ds$ or $\int_{C}^{R} f(x, y) dx$ or $\int_{C}^{R} f(x, y) dy$
 - e) $\int_{C} \vec{F} \cdot d\vec{r}$ or $\int_{C} M(x, y, z) dx + N(x, y, z) dy + P(x, y, z) dz$
 - f) $\iint_{S} g(x, y, z) \cdot dS \text{ or } \iint_{S} \vec{F} \cdot \vec{n} dS$
 - g) What does it mean when a "line integral is independent of the path"?
 - h) State the Fundamental Theorem of Line Integrals. Make sure to know when it applies, and when it helps.
 - i) State Green's Theorem. Make sure to know when it applies, and in what situation it helps.
 - j) State Stoke's Theorem. Make sure to know when it applies, and in what situation it helps.
 - k) State Gauss' Theorem. Make sure to know when it applies, and in what situation it helps.
- 2. Below are four algebraic vector fields and four sketches of vector fields. Match them.

- (1) $F(x, y) = \langle x, y \rangle$, (2) $F(x, y) = \langle -y, x \rangle$, (3) $F(x, y) = \langle x, 1 \rangle$, (4) $F(x, y) = \langle 1, y \rangle$
- b) Below are two vector fields. Which one is clearly not conservative, and why?

- c) Say in the left vector field above you integrate over a straight line from (0,-1) to (1,0). Is the integral positive, negative, or zero? How about if you integrate from (-2,1) to (2,1)? How about from (-2,-1) to (2,-1)?
- d) Below are two slices of a 3D surface submerged in a 3D vector field. Imagine the picture as extending outwards of the paper. The normal vector shown is determined by the orientation of the surface. Is the flux $\iint_S \vec{F} \cdot \vec{n} \, dS$ positive, negative, or zero, for each surface?

- 3. Are the following statements true or false:
 - a) If the divergence of a vector is zero, the vector field is conservative.
 - b) If F(x, y, z) is a conservative vector field then curl(F) = 0
 - c) If a line integral is independent of the path, then $\iint_S F \cdot n \, dS = 0$ for every path surface S
 - d) If a vector field is conservative then $\int_{C} F \cdot dr = 0$ for every closed path C
 - e) $\iint_R dA$ gives the surface area of the region R
 - f) $\iint_R f(x, y) dA$ gives the volume of the region under the surface f(x, y) and over R, if f is positive.
 - g) $\iiint_Q dV$ gives the volume of Q
 - h) Can you apply the Fundamental Theorem of line integrals for the function $f(x, y, z) = xy \sin(z) \cos(x^2 + y^2)$?
 - i) Can you apply the Fundamental Theorem of line integrals for the vector field $F(x, y) = \langle 6xy^2 3x^2, 6x^2y + 3y^2 7 \rangle$?
 - i) Can you apply Green's theorem for a curve C, which is a straight line from (0,0,0) to (1,2,3)?
 - k) Can you apply Green's theorem for a vector field $F = \langle xy, yz, zx \rangle$ and a closed surface S?
 - 1) Can you apply Gauss' theorem for a vector field $F = \langle xy, yz, zx \rangle$ and a surface S given by z = f(x, y)
 - m) Can you apply Stoke's theorem for a 3D vector field and a surface S given by z = f(x,y)
- 4. Suppose that $F(x, y, z) = \langle x^3 y^2 z, x^2 z, x^2 y \rangle$ is some vector field. Find, if possible
 - a) div(F), curl(F), div(div(F)), curl(curl(F)), div(curl(F)), curl(div(F)), grad(curl(F)), and grad(div(F))
 - b) grad., div., and curl of the vector field if appropriate for $\langle x^2, y^2, z^2 \rangle$
 - c) grad., div., and curl of the vector field if appropriate for $(\cos(y) + y\cos(x), \sin(x) x\sin(y), xyz)$
 - d) grad., div., and curl of the vector field if appropriate for $f(x, y, z) = z \ln(x^2 + y^2)$
- 5. Decide which of the following vector fields are conservative. If a vector is conservative, find its potential function
 - a) $F(x, y) = <2xy, x^2 >$
 - b) $F(x, y) = \langle e^x \cos(y), e^x \sin(y) \rangle$
 - c) $F(x, y, z) = <\sin(y), -x\cos y, 1 >$
 - d) $F(x, y, z) = \langle 2xy, x^2 + z^2, 2zy \rangle$
 - e) $F(x, y) = <6xy^2 3x^2, 6x^2y + 3y^2 7>$
 - f) $F(x, y) = <-2y^3 \sin(2x), 3y^2(1 + \cos(2x) >$
 - g) $F(x, y, z) = <4xy + z, 2x^2 + 6y, 2z >$
 - h) $F(x, y, z) = <4xy + z^2, 2x^2 + 6yz, 2xz >$
- 6. Evaluate the following integrals:

a)
$$\iint_R \cos(x^2) dA$$
 where R is the triangular region bounded by $y = 0$, $y = x$, and $x = 1$

b)
$$\int_{0}^{1} \int_{1}^{2y} x^2 y^3 dx dy$$

c)
$$\int_C ds$$
, where C is the curve given by $r(t) = \langle t^2, 1+t \rangle$, $0 \le t \le 2$ (you might want to use Maple at some point)

d)
$$\int_C x^2 y^3 dx$$
, where C is the curve given by $r(t) = \langle t^2, t^3 \rangle$, $0 \le t \le 2$

e)
$$\int_C x^2 - y + 3ds \text{ where C is the circle } r(t) = \langle 2\cos(t), 2\sin(t) \rangle, \ 0 \le t \le \pi$$

f)
$$\int_C x^2 - y + 3z ds$$
 where C is a line segment given by $r(t) = \langle t, 2t, 3t \rangle$, $0 \le t \le 1$

g)
$$\int_C F \cdot dr$$
 where $F(x, y) = \langle y, x^2 \rangle$ and C is the curve given by $r(t) = \langle 4 - t, 4t - t^2 \rangle$, $0 \le t \le 3$

h)
$$\int_C F \cdot dr$$
 where $F(x, y) = \langle yz, x^2, zy \rangle$ and C is the curve given by $r(t) = \langle 1 - t, 3t, 2 - t^2 \rangle$, $1 \le t \le 3$

i)
$$\int_C y dx + x^2 dy$$
 where C is a parabolic arc given by $r(t) = \langle t, 1-t^2 \rangle$, $-1 \le t \le 1$

- j) Find the surface integral $\iint_S x 2y + z dS$, where S is the surface z = 10 2x + 2y such that x is between 0 and 2 and y is between 0 and 4.
- k) $\iint_{S} (x+z)dS$ where S is the first-octant portion of the cylinder $y^2 + z^2 = 9$ between x = 0 and x = 4

7. For some of the following line integrals there may be short-cut you can use to simplify your computations (but justify your shortcut by quoting the appropriate theorem)

a)
$$\int_C F \cdot dr \text{ where } F(x, y) = \langle e^x \cos(y), -e^x \sin(y) \rangle \text{ and C is the curve } r(t) = \langle 2\cos(t), 2\sin(t) \rangle, \ 0 \le t \le 2\pi$$

b)
$$\int_C 2xyzdx + x^2zdy + x^2ydz$$
 where C is some smooth curve from (0,0,0) to (1,4,3)

c)
$$\int_{C}^{C} F \cdot dr$$
 where $F(x, y) = \langle y^3 + 1, 3xy^2 + 1 \rangle$ and C is the upper half of the unit circle, from (1,0) to (-1,0)

d)
$$\int_C F \cdot dr$$
 where $F(x, y) = \langle y^3 x, 3xy^2 \rangle$ and C is the line segment from (-1,0) to (2,3).

e)
$$\int_C y^3 dx + (x^3 + 3xy^2) dy$$
 where C is the path from (0,0) to (1,1) along the graph of $y = x^3$ and from (1,1) to (0,0) along the graph of $y = x$.

8. Green's Theorem

a) Use Green's theorem to find
$$\int_C F \cdot dr$$
 where $F(x, y) = \langle y^3, x^3 + 3xy^2 \rangle$ and C is the circle with radius 3, oriented counter-clockwise (You may need the double-angle formula for cos somewhere during your computations, or use Maple)

- b) Evaluate $\iint_R dA$ where R is the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$ by using a vector field $F(x, y) = \langle -\frac{y}{2}, \frac{x}{2} \rangle$ and the boundary C of the ellipse R. Note that we did this in class, it is a very special application of Green's theorem.
- c) Find the surface integral $\iint_S x 2y + z dS$, where S is the surface z = 10 2x + 2y such that x is between 0 and 2 and y is between 0 and 4.
- d) Evaluate the flux integral $\iint_S \overrightarrow{F} \cdot \overrightarrow{n} dS$ where $F(x, y, z) = \langle x, y, z \rangle$ and S is $x^2 + y^2 + z^2 = 4$
- e) Evaluate $\int_{C} \vec{F} dr$ where $F(x, y, z) = \langle z^2, x^2, y^2 \rangle$ and C is the boundary of the surface S given by $z = 4 x^2 y^2$ and $z \ge 0$, oriented counter-clockwise.
- f) Evaluate $\int_C \vec{F} \, d\vec{r}$ where $F(x,y,z) = \langle -y^2, x, z^2 \rangle$ and C is the curve bounding the ellipse S consisting of the intersection of the plane y+z=2 and the cylinder $x^2+y^2=1$
- g) Evaluate $\iint_S curl(F) n \, dS$ where $F(x, y, z) = \langle xz, yz, xy \rangle$ and S is the part of the sphere $x^2 + y^2 + z^2 = 4$ that lies inside the cylinder $x^2 + y^2 = 1$ above the *xy*-plane.
- 9. Evaluate the following integrals. You can use any theorem that's appropriate:
 - h) $\int_C 2xyzdx + x^2zdy + x^2ydz$ where C is a smooth curve from (0,0,0) to (1,4,3)
 - i) $\int_C y dx + 2x dy$ where C is the boundary of the square with vertices (0,0), (0,2), (2,0), and (2,2)
 - j) $\int_C xy^2 dx + x^2 y dy$, where C is given by $r(t) = \langle 4\cos(t), 2\sin(t) \rangle$, t between 0 and 2 Pi.
 - k) $\int_C xy dx + x^2 dy$ where C is the boundary of the region between the graphs of $y = x^2$ and y = x.
- 10. Prove that if $F(x, y, z) = \langle M(x, y, z), N(x, y, z), P(x, y, z) \rangle$ is any vector field where M, N, P are twice continuously differentiable then div(curl(F)) = 0

Use Green's Theorem to prove that integrals of a conservative vector fields over closed curves are zero (assuming that the closed curve encloses a simply connected region and all conditions of Green's theorem are satisfied).