Math 2411 – Calc III Practice Exam 2

This is a practice exam. The actual exam consists of questions of the type found in this practice exam, but will be shorter. If you have questions do not hesitate to send me email. Answers will be posted if possible – no guarantee.

- **Definitions**: Please state in your own words the following definitions: 1.
 - a) Limit of a function z = f(x, y)
 - Continuity of a function z = f(x, y)b)
 - c) partial derivative of a function f(x,y)
 - d) gradient and its properties
 - directional derivative of a function f(x, y) in the direction of a unit vector u e)
 - The (definition and geometric meaning of) the double integral of f over the region $R \iint f(x, y) dA$ f)

Theorems: Describe, in your own words, the following: 2.

- b) the procedure to find relative extrema of a function f(x, y)
- c) the procedure to find absolute extrema of a function f(x, y)
- how to switch a double integral to polar coordinates d)
- a theorem that allows you to evaluate a double integral easily e)
- 3. True/False questions:

If $\lim_{x\to 0} f(x,y) = 0$ then $\lim_{x\to 0} f(x,0) = 0$ True. If general limit exists, the more a) specific one does, bo.

Fabre. If him flag 20 anything in possible for general mint If $\lim_{y\to 0} f(0, y) = 0$ then $\lim_{(x,y)\to (0,0)} f(x, y) = 0$ b)

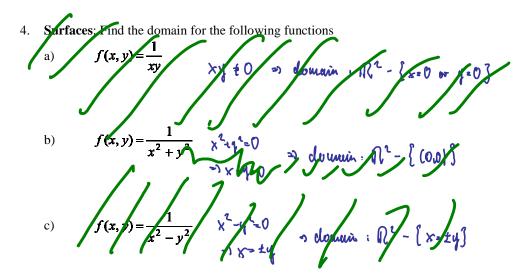
c)
$$\lim_{h \to 0} \frac{f(x+ah,y+bh) - f(x,y)}{h} = \frac{\partial}{\partial x} f(x,y) \quad \text{Pulse}$$

- If f is continuous at (0,0), and f(0,0) = 10, then $\lim_{(x,y)\to(0,0)} f(x,y) = 10$ True by the very definition of continuous by d)
- If f(x, y) is a function such that all second order partials exist and are continuous then $f_{xx} = f_{yy}$ Fuller $f_{xy} = f_{yx}$ but The volume under f(x,y), where $a \le x \le b$ and $g(x) \le y \le h(x)$ is $\int_{a}^{b} f(x, y) dx dy$ Fuller for f_{xy} and f_{yy} g) h)

i) If
$$f(x,y)$$
 is continuous then
$$\int_{a}^{b} \int_{c}^{d} f(x,y) dy dx = \int_{c}^{d} \int_{a}^{b} f(x,y) dx dy$$
True - Fubini 's Hum

j) If
$$f(x,y)$$
 is continuous then
$$\int_{a}^{b} \int_{c}^{d} f(x)g(y)dydx = \begin{pmatrix} b \\ a \end{pmatrix} f(x)dx \cdot \begin{pmatrix} d \\ b \\ c \end{pmatrix} \cdot \begin{pmatrix} d \\ b \\ c \end{pmatrix} True . If f only depends on x g only on g if works$$

k) If f is continuous over a region D then $\iint_D f(x, y) dx dy = \iint_D f(r, \theta) \partial d\theta dr$ where $f(r, \theta) \partial d\theta dr$ is the related



5. Limits and Continuity: Determine the following limits as $(x,y) \rightarrow (0,0)$, if they exist.

a)
$$\lim_{(x,y)\to(0,0)} \frac{xy+1}{x^2+y^2+1} = \frac{1}{2} \int_{1}^{2} \frac{1}{2$$

b)
$$\lim_{(x,y)\to(0,0)}\frac{xy+1}{x^2+y^2} \sim \frac{1}{2}$$
 underfried

c)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + y^2} : x=0: \lim_{y\to 0} \frac{y}{y} = 0$$

d.u.e.
$$x=y: \lim_{x\to 0} \frac{x^2}{1x^2} = \frac{1}{2}$$

d)
$$\lim_{(x,y)\to(0,0)} \frac{x^2 y}{x^2 + y^2}$$

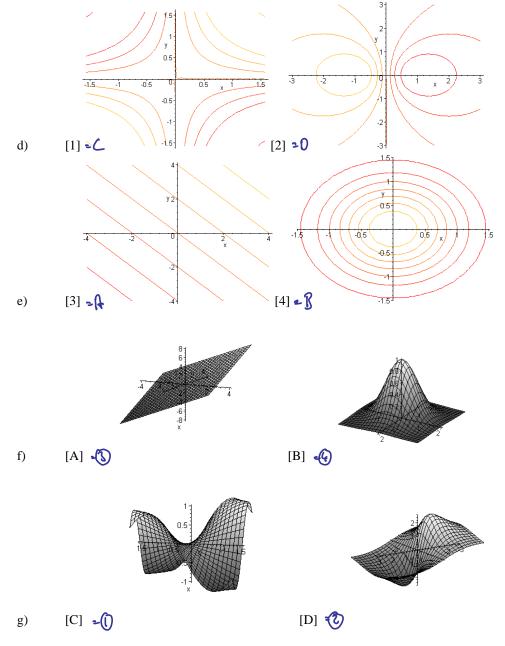
$$\lim_{(x,y)\to(0,0)} \frac{x^2 y}{x^2 + y^2}$$

$$\lim_{(x,y)\to(0,0)} \frac{x^2 y}{x^2 + y^2}$$

$$\lim_{(x,y)\to(0,0)} \frac{x^2 y}{x^2 + y^2} < \lim_{(x,y)\to(0,0)} \frac{x^2 y}{x^$$

e)
$$\lim_{(x,y)\to(0,0)} \frac{x^2 - y^2}{x^2 + y^2} \times 0$$
 where $\frac{y}{y_1} = -1$ and $\frac{y}{y_2} = -1$ and $\frac{y}{y_1} = -1$ and $\frac{y}{y_2} = -1$ and $\frac{y}{y_2} = -1$ and $\frac{y}{y_1} = -1$ and $\frac{y}{y_2} = -1$ and $\frac{y}{y_2} = -1$ and $\frac{y}{y_1} = -1$ and $\frac{y}{y_2} = -1$ and $\frac{y}{y_2} = -1$ and $\frac{y}{y_1} = -1$ and $\frac{y}{y_2} = -1$

6. **Picture**: Match the following contour plots (level plots) to their corresponding surfaces.



Other picture problems:

- Given a contour plot, draw the gradient vector at specific points
- classify some regions as type-1, type-2, or neither.

- 7. **Differentiation**: Find the indicated derivatives for the given function:
 - a) Find

b) Suppose
$$f(x,y) = 2x^3y^2 + 2y + 4x$$
, find
 $f_x = 6x^4 y^4 + 4y$
 $f_y = 4x^3 y + 2$
 $f_{xx} = 12x^4 y^4$
 $f_{xy} = 12x^4 y^4$
 $f_{yy} = 4x^3$
 $f_{yy} = 4x^3$
 $f_{yy} = 4x^3$
 $f_{yy} = 2x^3 y^4$
 $f_{yy} = 2x^3 y^4$
 $f_{yy} = 12x^4 y^4$
 $f_{yy} = 12x^4 y^4$
 $f_{yy} = 12x^4 y^4$
 $f_{yy} = 12x^4 y^4$
 $f_{yy} = 2x^3 y^4$

d) Let
$$f(x,y) = y^2 e^x + y$$
. Find
 $f_x = y^2 e^x$, $f_{xx} = q^2 e^x$, $f_y = 2q e^x e^x$, $f_{xy} = 2e^x$, $f_{xy} = f_{yx} = 2q e^x$
 $f_{xyy} = (f_{xy}|_q = 2e^x)$
 e^x because $(f_{xy}|_e) = 3(f_{xy}|_q = (f_{yx})_q)$
 $f_{yxy} = (f_{yx}|_q = 2e^x)$
 $f_{yyx} = 2e^x$

8. Directional Derivatives:

b)

a) Find the directional derivative of $f(x, y) = xy e^{xy}$ at (-2, 0) in the direction of a vector u, where u makes an angle of Pi/4 with the x-axis.

$$\int_{X} Y e^{xq} + xq y e^{xq} = y e^{xq} + xq e^{xq} = x e^{xq} + xq e^{xq} = y e^{xq} + xq e^{xq} = y e^{xq} + xq e^{xq} = y e^{xq} + xq e^{xq} + xq e^{xq} = y e^{xq} + xq e^{xq} = y e^{xq} + xq e^{xq} = x e^{xq} + xq e^{xq} = y e^{xq} + xq e^{xq} = x e^{xq} + xq e^{xq} = y e^{xq} + xq e^{xq} = y e^{xq} + xq e^{xq} = y e^{xq} + xq e^{xq} = x e^{xq} + xq e^{xq} = y e^{xq} + xq e^{xq} = y e^{xq} + xq e^{xq} = x e^{xq} + xq e^{xq} = x e^{xq} + xq e^{xq} = y e^{xq} + xq e^{xq} = x e^{xq} + x e^{xq} = x e^{xq} = x e^{xq} + x e^{xq} = x e^{xq} = x e^{xq} + x e^{xq} = x e^{xq} = x e^{xq} + x e^{xq} = x e^{xq} + x e^{xq} = x e^{xq} + x e^{xq} = x e^{$$

c) Suppose $f(x, y) = x^2 e^y$. Find the maximum value of the directional derivative at (-2, 0) and compute a unit vector in that direction.

10. Max/Min Problems: Compute the extrema as indicated

a)
$$f(x, y) = 3x^2 - 2xy + y^2 - 8y$$
. Find relative extreme and saddle point(s), if any.

$$f_x = G_x - 2y$$
 20
 $f_y = \frac{-2x + 2y - 1}{-9} = 0$ 3) $x = 2, y = 6$ is contract point.
 $\frac{1}{-9} = \frac{-2x + 2y - 1}{-9} = 0$

$$H = \begin{pmatrix} 6 & -2 \\ -2 & 2 \end{pmatrix}, \quad D = (2 - 4 - 8) \quad D > 0, \quad f_{-x} > 0 = 2 \quad (2, 6) \text{ is minifuum}$$

b) $f(x, y) = 4xy - x^{4} - y^{4}$. Find relative extrema and saddle point(s), if any $f_{x} = (4 - 4x^{3} = 0 \Rightarrow y \Rightarrow x^{3} \qquad x=0 \Rightarrow y=0 \qquad 3 \text{ cribial points}$ $f_{y} = (4x - 4y^{3} = 0 \Rightarrow x - x^{4} = 0 \qquad x=1 \Rightarrow y=1 \qquad (0w)_{1} (lwl)_{1} (l-l_{1}-l) \qquad x(1-x^{1})=0 \Rightarrow x=0, l_{1}-1 \qquad x=-l=1y=-1$ $f_{1} = \begin{pmatrix} -l2x^{2} & 4 \\ 4 & -l2y^{4} \end{pmatrix} = l(44x^{4}y^{4} - l6 \qquad af (0w)_{1}: 0 > 0 \Rightarrow saddle point af (0w) \qquad af (lwl)_{1}: 0 > 0, f_{w} < 0 \Rightarrow max \qquad wf (-l_{1}-l) \qquad af (lwl)_{1}: 0 > 0, f_{w} < 0 \Rightarrow max \qquad wf (-l_{1}-l) \qquad x = l(-l_{1}-l_{1})$ c) Let f(x, y) = 3xy - 6x - 3y + 7. Find absolute maximum and minimum inside the triangular region spanned by the points (0,0), (3, 0), and (0, 5). $f_x = 3y - 6 = 0$, $f_y = 3x - 3 = 0$ $f_y = 3x - 3 = 0$

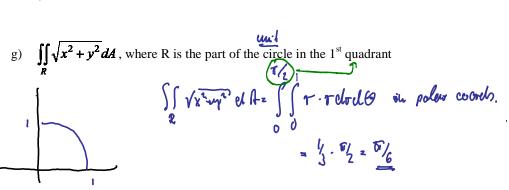
$$\begin{aligned} x = 0: \ f(nq) = -3q + 2 \ w \ orif. \\ y = 0: \ f(nq) = -6x + 1 \ w \ orif. \\ y = 0: \ f(nq) = -6x + 1 \ w \ orif. \\ (12) \ 1 \\ y = 1 \\ y = 1 \\ (12) \ 1 \\ (12)$$

11. Evaluate the following integrals:

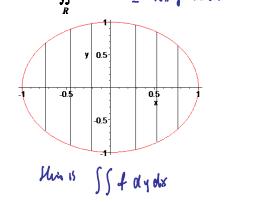
a)
$$\iint_{00}^{12} xy^2 dx dy = \int_{0}^{12} \frac{1}{2} x^2 q^2 \int_{x=0}^{12} dy z \int_{0}^{12} 2y^2 dy z = \frac{1}{2} y^2 \int_{0}^{12} \frac{2}{3} \frac{1}{3} \frac{1}{$$

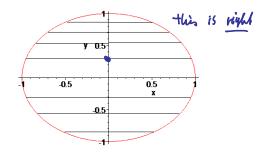
b)
$$\int_{0}^{\pi \pi/2} \int_{0}^{x/2} \sin(x) \cos(y) dy dx = \int_{0}^{h} \left[\sinh(y) \sin(y) \int_{y=0}^{y=h} dx = \int_{0}^{h} \sinh(y) dx = -\cosh(x) \int_{0}^{h} -\cosh(x) + \cos(x) \right]_{y=0}^{h}$$

c)
$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{2} + \frac{1}{2} \frac{1$$



12. The pictures below show to different ways that a region R in the plane can be covered. Which picture corresponds to the integral $\iint_R f(x, y) dx dy$ for y that x





13. Suppose you want to evaluate $\iint_R f(x, y) dA$ where R is the region in the xy plane bounded by y A db, $y = 2 - x^2$, and

y = x. According to Fubini's theorem you could use either the iterated integral $\iint f(x, y) dx dy$ or $\iint f(x, y) dy dx$ to evaluate the double integral. Which version do you prefer? Explain. You do not need to actually work out the integrals.

dranged this

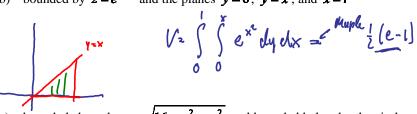
14. Use a multiple integral and a convenient coordinate system to find the volume of the solid: a) bounded by $z = r^2 - v + 4$, z = 0, v = 0, r = 0, and r = 4.

a) bounded by
$$z = x - y + 4$$
, $z = 0$, $y = 0$, $x = 0$, and $x = 4$

$$y = x^{2} + 4$$

b) bounded by $z = e^{-x^2}$ and the planes y = 0, y = x, and x = 1

\$



c) bounded above by $z = \sqrt{16 - x^2 - y^2}$ and bounded below by the circle $x^2 + y^2 \le 4$

$$\int_{\mathcal{R}} \sqrt{(l-x^2-y^2)} \, dA = \int_{0}^{l} \int_{0}^{l} \sqrt{(l-r^2)} \, r \, dr \, d\theta = \int_{0}^{2} \left[\left(l - r^2 \right)^{\frac{3}{2}} \left[\left(l - r^2 \right)^{\frac{3}{2}} \right]_{r=0}^{2} \cdot c \left(\theta = \frac{Maple}{r} \right)_{r=0}^{2} \left[\left(l - r^2 \right)^{\frac{3}{2}} \left[\left(l - r^2 \right)^{\frac{3}{2}} \right]_{r=0}^{2} \cdot c \left(\theta = \frac{Maple}{r} \right)_{r=0}^{2} \left[\left(l - r^2 \right)^{\frac{3}{2}} \right]_{r=0}^{2} \cdot c \left(\theta = \frac{Maple}{r} \right)_{r=0}^{2} \left[\left(l - r^2 \right)^{\frac{3}{2}} \right]_{r=0}^{2} \cdot c \left(\theta = \frac{Maple}{r} \right)_{r=0}^{2} \left[\left(l - r^2 \right)^{\frac{3}{2}} \right]_{r=0}^{2} \cdot c \left(\theta = \frac{Maple}{r} \right)_{r=0}^{2} \cdot c \left(\theta =$$

d) evaluate
$$\iint_{R} \frac{y}{x^{2} + y^{2}}$$
 where R is a triangle bounded by $y = x$, $y = 2x$, $x = 2$

$$\int_{R} \int_{R} \int_{r^{2} + y^{2}} \int_{r^$$

15. Find the following surface areas:
a) of the following surface areas:
a) of the following surface areas:
a) of the following surface areas:
b) of the cylinder
$$z = 9 - 61$$
 above the triangle bounded by $y = x$, $y = -x$, and $y = 3$
 $x + 0$, $t + -2t$
 $y + t + t + 1 + 4$, $t + 4$,

16. Prove the following facts: a) Use the definition to find f_x for f(x, y) = xy of course I have $f_x - y$. Here to prove it: $f_x = \lim_{h \to 0} \frac{f(x+h, y) - f(xy)}{h} = \lim_{h \to 0} \frac{f(x+h, y) - f(xy)}{h$

b) Use the definition to find
$$f_x$$
 for $f(x, y) = xy$
Source public

c) A function f is said to satisfy the Laplace equation if
$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$$
. Show that the function

 $f(x, y) = \ln(x^2 + y^2)$ satisfies the Laplace equation.

$$f_{x} = \frac{e_{x}}{x^{2} e_{y} e_{y}} + f_{xx} = \frac{2(x^{2} e_{y} e_{y}) - 2x(2x)}{(x^{2} e_{y} e_{y})^{2}} = \frac{2e_{x}^{2} - 2x^{2}}{(x^{2} e_{y} e_{y})^{2}}$$

$$f_{y} = \frac{2x^{2} - 2y^{2}}{(x^{2} e_{y} e_{y})^{2}} = \frac{1}{2e_{x}} + \frac{1}{2e_{y}} = \frac{2e_{y}^{2} - 2x^{2}}{(x^{2} e_{y} e_{y})^{2}} + \frac{2x^{2} - 2e_{y}^{2}}{(x^{2} e_{y})^{2}} = \frac{1}{2e_{y}} = \frac{1}{2e_{y}} + \frac{1}{2e_{y}} = \frac{1}{2e_{y}} + \frac{1}{2e_{y}} + \frac{1}{2e_{y}} + \frac{1}{2e_{y}} = \frac{1}{2e_{y}} + \frac{1}{2e_{y}} +$$

Two function u(x, y) and v(x, y) are said to satisfy the Cauchy-Riemann equations if $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$. Show that the functions $u(x, y) = e^x \cos(y)$ and $v(x, y) = e^x \sin(y)$ satisfy the Cauchy-Riemann equations.

$$U_{x^{2}} \in X^{2} \text{ us}(q) \qquad U_{y^{2}} = e^{X} \text{ us}(q) \qquad y \quad U_{y^{2}} = U_{y} \text{ usual}$$

$$V_{x^{2}} \in X^{2} \text{ sid}(q) \qquad V_{y^{2}} \in X^{2} \text{ us}(q) \qquad U_{y^{2}-14} \qquad So \quad \text{fore}$$

$$(c) \qquad \text{Let } \left(x, p\right) = \frac{1}{x^{2} + y^{2}} \quad \text{for}(x, p) \neq (0, 0) \text{ Then show that I has partial derivatives (0, 0) but form is derivatives (0, 0) - form it is derivatives (0, 0) but form is derivatives (0, 0) but form is derivatives (0, 0) - form it is derivatives (0, 0) but form is derivatives (0, 0) - form it is derivati$$

d)