Cole 3: Assignment $\# 8$
(1) Sketch or describe the following curves:
a) $r(t)=<\cos (t), \sin (t))$
s) $r(t)=\left\langle t_{1} \sin (t)\right)$
c) $r(c)=\langle t, \cos (t), \sin (t))$
d) $r(t)=\left\langle l+f_{1} 3 t,-f\right\rangle$
(2) Find the following limit:
a) $\lim _{t \rightarrow 0}\left\langle\frac{e^{t}-1}{t}, \frac{\sqrt{l t+}-1}{t}, \frac{3}{l+t}\right\rangle$
8) $\lim _{t \rightarrow \infty}\left\langle\arctan (t), e^{-2 t}, \frac{\ln (t)}{f}\right)$
(3) Find Che derivatives of:
a) $\vec{\tau}(t)=<t \sin (t), \tan (t), f \cos (2 t))$
b) $\vec{r}(t)=e^{t^{2}} i-j+\ln ((t+z) k$
(4) Find $\int_{1}^{2} t^{2} i+t \sqrt{t-1} j+t \sin (\pi t) k d t$
(5) Taro particles havel along the space curves

$$
r_{l}(f)=\left\langle t_{1} t_{1}^{2} t^{3}\right), r_{c}(t)=<1+2 t_{1}\left(+6 t_{1} 1+14 t\right)
$$

Do they collide? Do their pathos intersect?
or Wolfrem Alpher
(6) Une Muple's spacecurve commend to ploti in $R^{?}$

$$
a)<C(l+\cos (16 t) \cos (t),(l+\cos (16 t) \sin (t), l+\cos (16 t))
$$

b) $<\cos (t) \sin (2 t), \sin (t) \sin (2 t), \cos (2 t))$

$$
\text { c) }\left\langle t_{1}+\sin (f)_{1}+\cos (t)\right)
$$

(1) Pwove the praduet mele for recter valued Sunclown $\vec{u}(t), \vec{v}(\vec{t})$ in $\mathbb{R}^{2}$.
or Woffrum Arpha
Valenline's Special: Che Mapher's "plot"connunal to chaw lle $2 D$ purametrio curve qiven by

$$
\left.\vec{r}(t)=\left.\langle\cos (t) \sin (t) \ln (|t|),| t\right|^{0.3} \sqrt{\cos (t t)}\right) \text { for }-\mid \leqslant t=1 \text {. }
$$

Hint, plot(cost(t), sint(t) $t=0.2^{2}$ Pil) should avork it Maple parametic plot (sintt), cost(t) as $t=0$ works in $W A_{1}$ as examples for $2 D$ functions.

Also bory to plot the 20 curve:

$$
\vec{r}(t)=\left\langle 3.9 \cdot \sin ^{3}(t), 3 \cos (t)-1.2 \cos (2 t)-0.6 \cos (3 t)-0.2 \cos (4+1)\right)
$$

for $0 \leq f \leq 2 \pi$ Ohich one do you like Setter?
(8) Find the arclenall of the slinky

$$
r(t)=\langle\cos (t), \sin (t), t), 0 \leq t \leq 2 \pi
$$

