Panel 1

Panel 2

Panel 3

Inst probe shaper like a sudll cube

$$
\begin{aligned}
& \iint_{S_{1}}^{\vec{F}} \cdot \vec{\omega} d \int>0 \quad \iint_{1} \text { source } \vec{F} \cdot \vec{w} d S<0 \\
& =\iiint \operatorname{div}(F) d V>0 \quad S_{2}=\iiint \operatorname{liv}\left(F_{2}\right) d V<0
\end{aligned}
$$

Panel 4
Ex $\quad \bar{f}=(2 z, 3 x, 5 y), S: z=4-x^{2}-y^{2}, z \geqslant 0$

$$
\begin{aligned}
& =\int_{0} \int_{0}(10 r \cos (t)+4 r \sin (A)+3) r d r d t=125
\end{aligned}
$$

Panel 5

Panel 6
b) $\int_{C} \vec{F} \cdot d \vec{d}$ where $\vec{F}(x, y)=<2 x y^{3}+x \cos (x), 3 x^{2} y^{2}-\sin (y) e^{y}>$ and C is the closed curve given by the boundary of the square with corner points $(-1,-1),(-1,1),(1,-1)$, and $(1,1)$.
c) $\iint_{S} \vec{F} \cdot \vec{n} d S$ where $F(x, y, z)=<x+z^{2}, 2 y-\cos (x z), 3 z>$ and S is given by $x^{2}+y^{2}+z^{2}=9$
d) $\int_{C} \vec{F} d r$ where $F(x, y, z)=<z^{2}, x^{2}, y^{2}>$ and C is the boundary of the surface S given $z=1-x-y$, restricted by the coordinate planes and oriented counter-clockwise.

$$
\int_{c}^{\frac{1}{F}} d \dot{r}=\iint_{S}^{\operatorname{cose}(F) \mid \vec{d} d S}
$$

Panel 7

