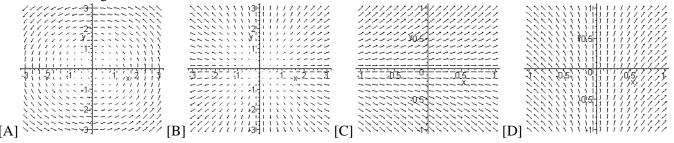
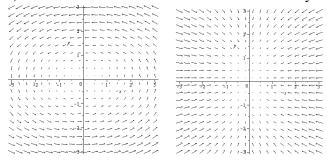
Math 2511: Calc III - Practice Exam 3

- 1. State the meaning or definitions of the following terms:
 - a) vector field, conservative vector field, potential function of a vector field, volume, length of a curve, work, surface area
 - b) curl and divergence of a vector field F, gradient of a function
 - c) $\iint_{R} dA \text{ or } \iint_{R} f(x, y) dA \text{ or } \iiint_{Q} f(x, y, z) dV$
 - d) $\int_C ds$ or $\int_C f(x, y)ds$ or $\int_C f(x, y)dx$ or $\int_C f(x, y)dy$
 - e) $\int_{C} \vec{F} \cdot d\vec{r}$
 - f) $\iint_{S} g(x, y, z) \cdot dS$
 - g) $\int_{C} M(x, y, z)dx + N(x, y, z)dy + P(x, y, z)dz$
 - h) What does it mean when a "line integral is independent of the path"?
 - i) State the Fundamental Theorem of Line Integrals. Make sure to know when it applies, and when it helps.
 - j) State Green's Theorem. Make sure to know when it applies, and in what situation it helps.
- 2. Below are four algebraic vector fields and four sketches of vector fields. Match them.



- (1) $F(x, y) = \langle x, y \rangle$, (2) $F(x, y) = \langle -y, x \rangle$, (3) $F(x, y) = \langle x, 1 \rangle$, (4) $F(x, y) = \langle 1, y \rangle$
- b) Below are two vector fields. Which one is clearly not conservative, and why?



- c) Say in the left vector field above you integrate over a straight line from (0,-1) to (1,0). Is the integral positive, negative, or zero? How about if you integrate from (-2,1) to (2,1)? How about from (-2,-1) to (2,-1)?
- 3. Are the following statements true or false:
 - a) If the divergence of a vector is zero, the vector field is conservative.
 - b) If F(x, y, z) is a conservative vector field then curl(F) = 0
 - c) If a line integral is independent of the path, then $\int_C F \cdot dr = 0$ for every path C
 - d) If a vector field is conservative then $\int_C F \cdot dr = 0$ for every *closed* path C

- e) $\iint_{\mathbb{R}} dA$ denotes the surface area of the region R
- f) $\iint_{R} f(x,y)dA$ denotes the volume of the region under the surface f(x,y) and over R, if f is positive.
- g) Can you apply the Fundamental Theorem of line integrals for the function $f(x, y, z) = xy \sin(z) \cos(x^2 + y^2)$?
- h) Can you apply the Fundamental Theorem of line integrals for the vector field $F(x, y) = \langle 6xy^2 3x^2, 6x^2y + 3y^2 7 \rangle$?
- i) Can you apply Green's theorem for a curve C, which is a straight line from (0,0,0) to (1,2,3)?
- 4. Suppose that $F(x, y, z) = \langle x^3 y^2 z, x^2 z, x^2 y \rangle$ is some vector field.
 - a) Find div(F)
 - b) Find curl(F)
 - c) Find *curl(curl(F))*
 - d) Find div(curl(F))
 - e) grad., div., and curl of the vector field if appropriate for $\langle x^2, y^2, z^2 \rangle$
 - f) grad., div., and curl of the vector field if appropriate for $\langle \cos(y) + y \cos(x), \sin(x) x \sin(y), xyz \rangle$
 - g) grad., div., and curl of the vector field if appropriate for $f(x, y, z) = z \ln(x^2 + y^2)$
- 5. Decide which of the following vector fields are conservative. If a vector is conservative, find its potential function
 - a) $F(x, y) = \langle 2xy, x^2 \rangle$
 - b) $F(x, y) = \langle e^x \cos(y), e^x \sin(y) \rangle$
 - c) $F(x, y, z) = <\sin(y), -x\cos y, 1 >$
 - d) $F(x, y, z) = \langle 2xy, x^2 + z^2, 2zy \rangle$
 - e) $F(x, y) = <6xy^2 3x^2, 6x^2y + 3y^2 7>$
 - f) $F(x, y) = <-2y^3 \sin(2x), 3y^2(1 + \cos(2x) >$
 - g) $F(x, y) = \langle 4xy + z, 2x^2 + 6y, 2z \rangle$
 - h) $F(x, y) = <4xy + z^2, 2x^2 + 6yz, 2xz >$
- 6. Evaluate the following integrals:
 - a) $\iint_R \cos(x^2) dA$ where R is the triangular region bounded by y = 0, y = x, and x = 1
 - $b) \int_{0}^{1} \int_{1}^{2y} x^2 y^3 dx dy$
 - c) $\int_C ds$, where C is the curve given by $r(t) = \langle t^2, 1+t \rangle$, $0 \le t \le 2$ (you might want to use Maple at some point)
 - d) $\int_C x^2 y^3 dx$, where C is the curve given by $r(t) = \langle t^2, t^3 \rangle$, $0 \le t \le 2$
 - e) $\int_{C}^{C} x^{2} y + 3ds \text{ where C is the circle } r(t) = \langle 2\cos(t), 2\sin(t) \rangle, \ 0 \le t \le \pi$
 - f) $\int_C x^2 y + 3z ds$ where C is a line segment given by $r(t) = \langle t, 2t, 3t \rangle$, $0 \le t \le 1$
 - g) $\int_C F \cdot dr$ where $F(x, y) = \langle y, x^2 \rangle$ and C is the curve given by $r(t) = \langle 4 t, 4t t^2 \rangle$, $0 \le t \le 3$
 - h) $\int_C F \cdot dr$ where $F(x, y) = \langle yz, x^2, zy \rangle$ and C is the curve given by $r(t) = \langle 1 t, 3t, 2 t^2 \rangle$, $1 \le t \le 3$

- i) $\int_C y dx + x^2 dy$ where C is a parabolic arc given by $r(t) = \langle t, 1-t^2 \rangle$, $-1 \le t \le 1$ j) Find the surface integral $\iint_S x 2y + z dS$, where S is the surface z = 10 2x + 2y such that x is between 0 and 2 and y is between 0 and 4.
- k) $\iint_{S} (x+z)dS$ where S is the first-octant portion of the cylinder $y^2 + z^2 = 9$ between x = 0 and x = 4
- For some of the following line integrals there may be short-cut you can use to simplify your computations (but justify your shortcut by quoting the appropriate theorem)
 - $\int F \cdot dr \text{ where } F(x, y) = \langle e^x \cos(y), -e^x \sin(y) \rangle \text{ and C is the curve } r(t) = \langle 2\cos(t), 2\sin(t) \rangle, \ 0 \le t \le 2\pi$
 - b) $\int 2xyzdx + x^2zdy + x^2ydz$ where C is some smooth curve from (0,0,0) to (1,4,3)
 - c) $\int_C F \cdot dr$ where $F(x, y) = \langle y^3 + 1, 3xy^2 + 1 \rangle$ and C is the upper half of the unit circle, from (1,0) to (-1,0)
 - d) $\int F \cdot dr$ where $F(x, y) = \langle y^3 x, 3xy^2 \rangle$ and C is the line segment from (-1,0) to (2,3).
 - e) $\int y^3 dx + (x^3 + 3xy^2) dy$ where C is the path from (0,0) to (1,1) along the graph of $y = x^3$ and from (1,1) to (0,0) along the graph of y = x.
- Green's Theorem
 - a) Use Green's theorem to find $\int_C F \cdot dr$ where $F(x, y) = \langle y^3, x^3 + 3xy^2 \rangle$ and C is the circle with radius 3, oriented counter-clockwise (You may need the double-angle formula for cos somewhere during your computations, or use Maple)
 - b) Evaluate $\iint_{R} dA$ where R is the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$ by using a vector field $F(x, y) = \langle -\frac{y}{2}, \frac{x}{2} \rangle$ and the boundary C of the ellipse R. Note that we did this in class, it is a very special application of Green's theorem.
- 9. Evaluate the following integrals. You can use any theorem that's appropriate:
 - $\int_C 2xyzdx + x^2zdy + x^2ydz$ where C is a smooth curve from (0,0,0) to (1,4,3)
 - $\int ydx + 2xdy$ where C is the boundary of the square with vertices (0,0), (0,2), (2,0), and (2,2)
 - e) $\int xy^2 dx + x^2 y dy$, where C is given by $r(t) = \langle 4\cos(t), 2\sin(t) \rangle$, t between 0 and 2 Pi.
 - $\int xydx + x^2dy$ where C is the boundary of the region between the graphs of $y = x^2$ and y = x.
- 10. Prove that if $F(x, y, z) = \langle M(x, y, z), N(x, y, z), P(x, y, z) \rangle$ is any vector field where M, N, P are twice continuously differentiable then div(curl(F)) = 0

Use Green's Theorem to prove that integrals of a conservative vector fields over closed curves are zero (assuming that the closed curve encloses a simply connected region and all conditions of Green's theorem are satisfied).