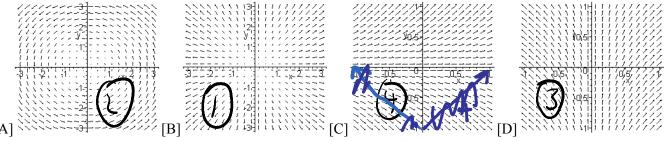
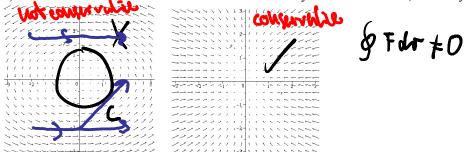
Math 2511: Calc III - Practice Exam 3

- 1. State the meaning or definitions of the following terms:
 - a) vector field, conservative vector field, potential function of a vector field, volume, length of a curve, work, surface area, flux integral
 - b) curl and divergence of a vector field F, gradient of a function
 - c) $\iint_{\mathbb{R}} dA$ or $\iint_{\mathbb{R}} f(x, y) dA$ or $\iiint_{\mathbb{Q}} f(x, y, z) dV$
 - d) $\iint_C S \text{ or } \int_C ds \text{ or } \int_C f(x, y) ds \text{ or } \int_C f(x, y) dx \text{ or } \int_C f(x, y) dy \text{ or } \iint_C g(x, y, z) dS$
 - e) $\int_{C} \vec{F} \cdot d\vec{r}$ or $\iint_{S} \vec{F} \cdot dS$
 - f) $\int_C M(x, y, z)dx + N(x, y, z)dy + P(x, y, z)dz$
 - g) What does it mean when a "line integral is independent of the path"?
 - h) State the Fundamental Theorem of Line Integrals. Make sure to know when it applies, and when it helps.
 - 1) State Green's Theorem Make sure to know when it applies, and in what situation it helps.
 - i) State Gauss' Theorem. Make sure to know when it applies, and in what situation it helps.
- 2. Below are four algebraic vector fields and four sketches of vector fields. Match them.



- (1) $F(x, y) = \langle x, y \rangle$, (2) $F(x, y) = \langle -y, x \rangle$, (3) $F(x, y) = \langle x, 1 \rangle$, (4) $F(x, y) = \langle 1, y \rangle$
- b) Below are two vector fields. Which one is clearly not conservative, and why?



- c) Say in the vector field [C] above you integrate over a straight line from (0,-1) to (-1,0) is the integral positive, negative, or zero?
- 3. Are the following statements true or false:
 - a) If the divergence of a vector is zero, the vector field is conservative.
 - b) If F(x, y, z) is a conservative vector field then curl(F) = 0
 - c) If a line integral is independent of the path, then $\int_C F \cdot dr = 0$ for every path C \mathbf{T}
 - d) If a vector field is conservative then $\int_C F \cdot dr = 0$ for every closed path C

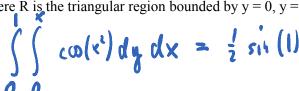
e)	$\iint_{\mathbb{R}} dA$	denotes the surface area of the region R	F	(every)
----	-------------------------	--	---	---------

f)
$$\iint_{R} dS$$
 denotes the volume of the region R.

- g) Can you apply the Fundamental Theorem of line integrals for the function $f(x, y, z) = xy \sin(z) \cos(x^2 + y^2)$?
- h) Can you apply the Fundamental Theorem of line integrals for the vector field $F(x, y) = \langle 6xy^2 3x^2, 6x^2y + 3y^2 7 \rangle$?
- i) Can you apply Green's theorem for a curve C, which is a straight line from (0,0,0) to (1,2,3)?
- j) Can you apply the Divergence theorem to the plane x+y+z=1 over [1, 1] x [-1, 1]?
- 4. Suppose that $F(x, y, z) = \langle x^3 y^2 z, x^2 z, x^2 y \rangle$ is some vector field.
 - a) Find div(F) $3x^2y^2z$
 - b) Find curl(F) $(x^3 y^2 - 2xy) \overline{e}_y + (2xz - 2x^3 yz) \overline{e}_z$
 - c) Find curl(curl(F)) $-2x^{3} z \overline{e}_{x} + (-2z + 6x^{2}yz) \overline{e}_{y} + (3x^{2}y^{2} - 2y) \overline{e}_{z}$
 - d) Find div(curl(F))
 0
 - e) grad., div., and curl of the vector field if appropriate for $\langle x^2, y^2, z^2 \rangle$ grad =n/a, div = 2x+2y+2z, curl = 0
 - f) grad., div., and curl of the vector field if appropriate for $\langle \cos(y) + y \cos(x), \sin(x) x \sin(y), xyz \rangle$ grad = n/a, div = $-y \sin(x) - x \cos(y) + xy$, curl = $(xz)\overline{e}_x - yz\overline{e}_y$
 - g) grad., div., and curl of the vector field if appropriate for $f(x, y, z) = z \ln(x^2 + y^2)$ $\operatorname{grad} = \frac{2zx}{x^2 + y^2} \overline{e}_x + \frac{2zy}{x^2 + y^2} \overline{e}_y + (\ln(x^2 + y^2)) \overline{e}_z$
- 5. Decide which of the following vector fields are conservative. If a vector is conservative, find its potential function
 - a) $F(x, y) = \langle 2xy, x^2 \rangle$ Then conservative $\int |x|^2 |x|^2 dx$
 - b) $F(x, y) = \langle e^x \cos(y), e^x \sin(y) \rangle$ Not conservative
 - c) $F(x, y, z) = \langle \sin(y), -x \cos y, 1 \rangle$ Not conservative
 - d) $F(x, y, z) = \langle 2xy, x^2 + z^2, 2zy \rangle$ by θ_x = $\langle 2xy, x^2 + z^2, 2zy \rangle$ by θ
 - e) $F(x, y) = <6xy^2 3x^2, 6x^2y + 3y^2 7>$

$$f = 3x^2 y^2 - x^3 + y^3 - 7x + C$$

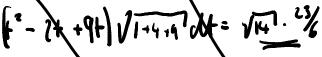
- 1901 320 (-54 (1x1) 1901 = -6 20 24 1x1)
- $F(x,y) = <-2y^3\sin(2x),3y^2(1+\cos(2x))$
- Ken conservation
- g) $F(x,y) = \langle 4xy + z, 2x^2 + 6y, 2z \rangle$ 0_x 0_y 0_1 0_y Not conservative 0_x 0_y 0_1 0_1 0_2
- h) $F(x, y) = \langle 4xy + z^2, 2x^2 + 6yz, 2xz \rangle$ Not conservative
- 6. Evaluate the following integrals:
 - $\int \int \cos(x^2) dA$ where R is the triangular region bounded by y = 0, y = x, and x = 1



- b) $\iint dS$, where S is the portion of the hemisphere $f(x, y) = \sqrt{25 x^2 y^2}$ that lies above the circle

$$x^2 + y^2 \le 9$$

c) $\int x^2 - y + 3z ds$ where C is a line segment given by $r(t) = \langle t, 2t, 3t \rangle$, $0 \le t \le 1$



d)
$$\int_{C} \mathbf{r} d\mathbf{r}$$
 where $F(x, y) = (y, x^{2})$ and C is the curve given by $r(t) = (4 - 4t - t^{2})$, $0 \le t \le 3$

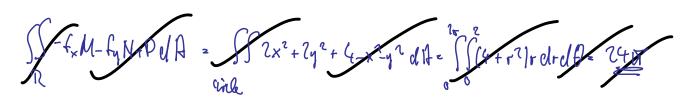
$$\int_{C} \mathbf{r} d\mathbf{r} d\mathbf{r}$$

- $\int y dx + x^2 dy$ where C is a parabolic arc given by $r(t) = \langle t, 1-t^2 \rangle$, $-1 \le t \le 1$

 $\iint (x+x)dS \text{ where S is the first-octant portion of the cylinder } y^2+z^2=9 \text{ between } x=0 \text{ and } x=4$

com to lo , need surface as 7= f(xy)

g) Find the flux of the vector field $F(x, y, z) = \langle x, y, z \rangle$ through the surface given by potion of the paraboloid $-x^2 - y^2$ that lies above the xy-plane. Note that this surface is *not* closed.



- 7. For the following line integrals there is a short-cut you can use to simplify your computations (but justify your shortcut by quoting the appropriate theorem)
 - a) $\int_C F \cdot dr \text{ where } F(x, y, z) = \langle e^x \cos(y), -e^x \sin(y) \rangle \text{ and C is the curve } r(t) = \langle 2\cos(t), 2\sin(t) \rangle,$ $0 \le t \le 2\pi$

F conservatives Colored course => Febr =0

b) $\int_C 2xyzdx + x^2zdy + x^2ydz$ where C is some smooth curve from (0,0,0) to (1,4,3)

= f(1,4,3) - f(0,0) = 12, where $f(xy,3) = x^2y + is$ potential lumbion

c) $\int_C F \cdot dr$ where $F(x,y) = \langle y^3 + 1,3xy^2 + 1 \rangle$ and C is the upper half of the unit circle, from (1,0) to (-1,0). $= \left(\left(-l_1 0 \right) - f(l_1 0) \right) = -2 \quad \text{if there } f(x,y) = 2 \quad \text{if } y = 2 \quad \text{if } y$

or internte along +(1) = (+,0), +=-1. 5: Jori de + (0+1)-041 = -2

d) $\int_C F \cdot dr$ where $F(x, y) = \langle y^3 x, 3xy^2 \rangle$ and C is the line segment from (-1,0) to (2,3).

e) $\int_C y^3 dx + (x^3 + 3xy^2) dy$ where C is the path from (0,0) to (1,1) along the graph of $y = x^3$ and from (1,1) to (0,0) along the graph of y = x.

Green: $\iint_{\mathbb{R}} 3x^2 + 3y^2 - 3y^2 dt = 3\iint_{0 \times 3} x^2 dy dx = \frac{1}{4}$

f) $\iint_{S} \vec{F} \cdot \vec{h} \, dS \text{ where } F(x, y, z) = \langle x, y, z \rangle \text{ and } S \text{ is } x^{2} + y^{2} + z^{2} = 4$ $\int_{S} \vec{F} \cdot \vec{h} \, dS \text{ where } F(x, y, z) = \langle x, y, z \rangle \text{ and } S \text{ is } x^{2} + y^{2} + z^{2} = 4$ $\int_{S} \vec{F} \cdot \vec{h} \, dS \text{ where } F(x, y, z) = \langle x, y, z \rangle \text{ and } S \text{ is } x^{2} + y^{2} + z^{2} = 4$

- 8. Green's Theorem
 - a) Use Green's theorem to find $\int_C F \cdot dr$ where $F(x, y) = \langle y^3, x^3 + 3xy^2 \rangle$ and C is the circle with radius 3, oriented counter-clockwise (You may need the double-angle formula for cos somewhere during your computations)

$$\iint_{\mathbb{R}} 3x^2 + 3y^2 - 9y^2 dA = \iint_{\mathbb{R}} 3r^2 \cos^2\theta r dr d\theta = 24$$

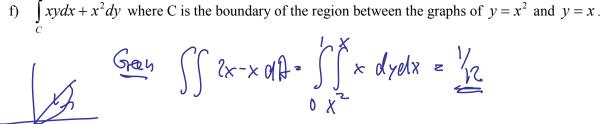
b) Evaluate $\iint_{R} dA$ where R is the ellipse $\frac{x^{2}}{4} + \frac{y^{2}}{9} = 1$ by using a vector field $F(x, y) = \langle -\frac{y}{2}, \frac{x}{2} \rangle$ and the boundary C of the ellipse R.

$$\iint_{\frac{1}{2}-(-\frac{1}{2})dA^{2}} \int_{-\frac{1}{2}}^{-\frac{1}{2}} \int_{x}^{-\frac{1}{2}} \int_$$

- 9. Evaluate the following integrals. You can use any theorem that's appropriate:
 - c) $\int_C 2xyzdx + x^2zdy + x^2ydz$ where C is a smooth curve from (0,0,0) to (1,4,3)

d) $\int_C ydx + 2xdy$ where C is the boundary of the square with vertices (0,0), (0,2), (2,0), and (2,2)

e) $\int xy^2 dx + \underline{x^2}y dy$, where C is given by $r(t) = \langle 4\cos(t), 2\sin(t) \rangle$, t between 0 and 2 Pi.



- 10. Prove the following:
- a) If $F(x, y, z) = \langle M(x, y, z), N(x, y, z), P(x, y, z) \rangle$ is any vector field where M, N, P are twice continuously differentiable then div(curl(F)) = 0

can't work out all there purkuls

A function (not a vector field) f(x, y, z) is called harmonic if $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0$. Show that for any function f(x, y, z) the function $\frac{1}{f(x, y, z)}$ is harmonic.

$$= \int_{X} \left(\cos(x^{2}) dy dx \right) = \int_{X} \left(\cos(x^{2}) dx \right) dx$$

a) [xy2dx =] (tr)2(tr)3 2+elt=25 trull=2.15 e) (x-y+2 ds= (4coi(+)-2shn(h)+3) /4coi+4nh dx

-4 (4coi(h)-6sin(h)+3 ex=-4+57 c) [x,-147392= 2(t,-5++6+)/[+4+6/=/14) 83 g) {Febr= [qelx+x2ely= (4++)(-1)el++(4+)(42)

i) [ydx+x3dy = ((1-t2)[++2(-24)elt=8/1/