Math 2511 - Call 3 Practice Exam 1
This is a practice exam. The actual exam consists of questions of the type found in this practice exam, but will be shorter. If you have questions do not hesitate to send me email.

1. Definitions: Please state in your own words the meaning of the following terms:
a) Vector
b) Dot product, Cross product
c) Angle between two vectors
d) Unit vector
e) Projection of \mathbf{v} onto \mathbf{w}
f) Plane, Line, Space curve
g) Distance between plane and point
h) Intersection between a line and a point
i) Smooth curve
j) Tangent vector to a curve
k) Unit tangent vector to a curve
1) Normal vector to a curve
m) Binormal vector
n) Curvature
o) Length of a curve
2. True/False questions:
Γ a) $u \cdot u=\|u\|^{2}$
b) $\langle 1,3,2\rangle$ and $\langle-4,-2,5\rangle$ are perpendicular diet product is Fro
c) $\langle 1,3,-2\rangle$ and $\langle 2,6,4\rangle$ are parallel
d) $\mathrm{P}(1,2,3)$ is on the plane $3 \mathrm{x}-2 \mathrm{y}-\mathrm{z}=-2$

$$
3 \cdot 1-2 \cdot 2-3 \neq-2
$$

e) $\mathrm{P}(1,2,3)$ is on the line $\left.r(t)=<1+2 t, 2+4 t, 1-t>+(0)=(1,41)+\left(\mid \imath_{1}\right]\right)$
f) $v \times w=-w \times v$
g) $v \cdot w=\|v\|\|w\| \sin (\theta)$
\nRightarrow
h) $\frac{d}{d t}\|r(t)\|=\left\|\frac{d}{d t} r(t)\right\|$
\mathcal{F} i) $\frac{d}{d t} p(t) \times r(t)=p^{\prime}(t) \times r^{\prime}(t)$
F j) $r(t)=\langle\sqrt{t}+2,3-\sqrt[3]{t}, \sqrt[4]{t}\rangle$ is the equation of a line
F k) If $\|r(t)\| \equiv 1$ then $r(t) \times{ }^{\prime}(t)=0$

1) The planes $x+3 y+2 z=5$ and $4 x+2 y-5 z=0$ are perpendicular $\langle 1,9,2\rangle \cdot(4,2,-5)=0$
m) The distance between $x-y+z=2$ and $x+y+z=1$ is zero not phullel so
3. Vectors: Suppose $u=\langle 7,-2,3\rangle, v=<-1,4,5>$, and $w=<-2,1,-3>$
a) Are u and Orthogonal, parallel, or neither?

$$
(2,-2,3) \cdot(-1,4,5)=-7-8+1528
$$

b) Find graphically and algebraically $2 u+3 v$ and $u-v$
 limbus $1420 \|$
c) Find the angle between v and w

$$
\cos (\theta)=\frac{(-1,4,5) \cdot(-2,1,-2)}{\sqrt{42} \sqrt{14}}=\frac{2+4-17}{\sqrt{42} \sqrt{14}}=\frac{-7}{\sqrt{42} \sqrt{14}}
$$

d) Find $u \cdot v$ (dot product), $u \times v$ (cross product), $u \cdot(v \times w)$, and $\|u\|$

$$
\begin{array}{ll}
u \cdot v=0 & U \cdot(v \times w)=-72 \\
\left.a \times v=\left\langle-22_{1}-3\right\rangle_{1} 26\right) & \|U\|=\sqrt{62}
\end{array}
$$

e) Find the projection of w onto u and the projection of u onto w
4. Lines and Planes
a) Find the equation of the plane spanned by $\langle 1,3,-2>$ and $<2,1,2\rangle$ through the point $P(1,2,3)$
b) Find the equation of the plane through $P(1,2,3), Q(1,-1,1)$, and $R(3,2,1)$

$$
P Q \times P \eta=\langle G,-4, G) \rightarrow G x-4 y+G z+D=0 \quad \underset{y=-16}{6 x-4 y+6 z-G=0}
$$

c) Find the equation of the plane parallel to $x-y+z=2$ through $P(0,2,0)$

$$
\begin{aligned}
x-y+z+D & =0 \quad \Rightarrow x-y+3+2=0 \\
& =2 x
\end{aligned}
$$

d) Find the equation of a plane parallel to the lines $l_{1}(t)=<1-2 t, 2 t, 3-t>$ and $l_{2}(t)=<$ $t, 1-2 t, 2+2 t>$ through the point $\mathrm{P}(1,0,0)$

$$
\begin{aligned}
& (-2,2,-1) \times 1,-2,2)=(2,3,2) \\
& \Rightarrow 2 x+3 y+2 x+D=0 \\
& 2+D=0 \quad=0=-2
\end{aligned}
$$

$$
2 x+3 y+2 z-2=0
$$

e) Find the equation of the line through $P(1,2,3)$ and $Q(1,-1,1)$

$$
l(k)=(1,2,3)+f(0,-3,-2)
$$

f) Find the line parallel to the line $l(t)=<1-2 t, 2 t, 3-t>$ through $\mathrm{P}(1,1,1)$

$$
d(\mid 1)=f(1,1,1)+f(-2,2,-1)
$$

5. Distances

a) Find the distance between the points $\mathrm{P}(1,2,3)$ and $\mathrm{Q}(1,2,5)$

$$
d=\sqrt{(1-1)^{2}+(2-2)^{2}+(5-3)^{2}}=2
$$

b) Find the distance between the line $x-y=2$ and $P(1,2)$

c) Find the distance between the line $l(t)=<1-2 t, 2 t, 3-t>$ and the point $P(1,2,3)$ $\left.Q_{1} l, 0,1\right)$ and $Q_{2}(-1,2,2)$ are on line.

d) Find the distance between the plane $x+y+z=1$ and the point $P(1,2,3)$

$$
a=\frac{1.1+1.2+1.3-1}{\sqrt{3}}=5 / \sqrt{3}
$$

e) Find the distance between the plane $x+2 y-z=1$ and the line $l(t)=<4,-1,2\rangle$

$$
\begin{aligned}
& \text { wot es lind } \\
& \text { so vething to do. }
\end{aligned}
$$

f) Find the distance between the planes $x-y+z=2$ and $2 x-2 y+2 z=5$

Phases ens parallel, so distance is not tho
Pow plum 15: $P(2,0,0)$

$$
\Rightarrow d=\frac{|2 \cdot 2 \cdot 0-0-\sigma|}{\sqrt{2^{2}+2^{2}+2^{0}}}=\frac{1}{\sqrt{n}}
$$

6. Intersections
a) Are the following lines parallel, skew, or intersecting? If they intersect, find the point of intersection: $l_{1}(t)=<2,-1,2>+t<3,1,1>$ and $l_{2}(t)=<-1,0,0>+t<3,-1,2>$

$$
2+3 t=-1+1 s<2+f=2(1-t) \rightarrow 2+f=2-f \Rightarrow t=0
$$

$$
2+t=25
$$

\Rightarrow point of intersection in $(2,-1,2)$
b) Do the plane $x-y+z=2$ and the line $l(t)=<1+t, 2 t, 1-5 t>$ intersect? If so, where?
c) Do the planes $x-y+z=0$ and $2 x-z=3$ intersect? If so, find the line of intersection.
$\langle(-1,1) \times\langle 2,0,1)=<-1,1,2)$ is dis of fin of the section.
Goer thowif,
7. Vector valued functions:
a) Find $r^{\prime}(t)$ if $r(t)=<6 t,-7 t^{2}, t^{3}>$

$$
r^{\prime}(t)=\left\langle 6,-14 t_{1} 3 t^{2}\right)
$$

b) Find $r^{\prime \prime}(t)$ if $r(t)=<a \cos ^{3}(t), a \sin ^{3}(t), t \sin (t)>$

$$
\begin{aligned}
& \psi^{\prime}(d)=\left\langle-3 \operatorname{aces}^{2}(t) \sin ^{2}(t), 3 a \sin ^{2}(t) \cos (t)\right)_{1} \sin ^{2}(t)+d \operatorname{ces}(t) \int \\
& f^{\prime \prime}(k)=\text { means }
\end{aligned}
$$

$$
\begin{aligned}
& x-0, \quad-y+z=0 \\
& -z=0 \\
& x \underline{x=0, y-3+-3} \\
& l(1)=(0,-1,-1)+C(-1,1,2) \text { in hinsol Wrowher }
\end{aligned}
$$

$$
\begin{aligned}
& (1+t)-(2 k)+(1-5)-2 \\
& f-2 t-5 t=2-1-1 \\
& \Rightarrow 6 t=0 \\
& \text { - }+0 \\
& \text { point at in Coseftion. }
\end{aligned}
$$

d) If $r(t)=<e^{t}, 3 t^{3}, \frac{3}{6 t}>$ some curve, find $\int_{1}^{2} r(t) d t$ and $\int_{1}^{2}\left\|r^{\prime}(t)\right\| d t$

$$
\begin{aligned}
\int_{1}^{2} r\left(t h e t t=\left\langle\int_{0}^{2} e^{t} d t \int_{1}^{2} 3 l^{2} d t \int_{2}^{2} \frac{8}{3 t} d t\right.\right. & =\left\langle e^{2}-e, \frac{45}{4}, \frac{1}{2} \ln (2)-0\right)= \\
& =\left\langle e^{2}-e_{1}, \frac{4 T}{4}, 2 \ln (21)\right.
\end{aligned}
$$

e) If $r(t)=\left\langle t, \frac{1}{t}\right\rangle$, find $T(t), N(t)$ ailleer plus or wino
f) Repeat (e) for $r(t)=<e^{t} \cos (t), e^{t} \sin (t)>$ for $t=\frac{\pi}{2}$ (Hint: there is a neat trick to find $\mathrm{N}(\mathrm{t})$,

$$
\begin{aligned}
& \text { which only works in } 2 \text { dimensions) } \\
& \left.T^{\prime}(\vec{l})=<e^{t} \cos (t)-e^{t} \sin (t), e^{f} \sin (l)+e^{f} \cos (t)\right) \\
& \|r(A)\|=\sqrt{2} e^{t} \Rightarrow r^{t}(M)=\frac{1}{2}\langle\cos (l)-\sin (A) \sin (A)+\cos (A)) \\
& \left.\Rightarrow F^{\prime}(\pi / 2)=\frac{1}{\sqrt{2}}<-1,1\right) \\
& \left.\Rightarrow \mathrm{NH}^{2} \left\lvert\, \begin{array}{l}
\frac{1}{2}<4,1
\end{array}\right.\right) \\
& \text { pts } r \text { hums }
\end{aligned}
$$

$$
\begin{aligned}
& \text { c) If } r(t)=<4 t, t^{2}, t^{3}>\text {, find } r^{\prime}(t), r^{\prime \prime}(t), \frac{d}{d t}\|r(t)\|,\left\|\frac{d}{d t} r(t)\right\| \\
& r^{\prime}(h)=\left\langle 4,2 t, 3 z^{2}\right) \\
& \left.r^{\prime \prime}(t)=<0, n G t\right) \\
& d\left\|^{d}\right\| r(u)=\frac{d}{d t} \sqrt{62^{2}+8^{4}+子^{5}} \cdot \frac{1}{2}\left(66 t^{2}+k^{4}+b^{6}\right)^{-12} \cdot\left(32 t+4 b^{5}+6 k^{4}\right) \\
& \left\|\frac{d}{d t}+\right\|=\|\left\langle 4,2 t, 3 t^{2}\right)=\sqrt{16+4 t^{2}+q t^{4}}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \nabla(x)=(4+9 x)^{1 / 2}(30,3 x)
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\left(4+9 t^{4}\right)^{-3 /}<-36 t^{3}, 0,24 t\right) \Rightarrow\|+\|^{2} \|=\left(4+9 t^{4}\right)^{-3 / 3} \cdot 12 t \sqrt{4+0 t^{4}}=\frac{12 t}{4+9 t^{4}} \\
& \left.\left.\Rightarrow N(h)=\left(4+9 t^{4}\right)^{-3 / 2}<-36 t^{3}, 0,24+\right) \frac{(4+9(4)}{12 t}=\left(4+9 t^{4}\right)^{-1 / 2}<-3 t^{2}, 0,2\right) \Rightarrow N(1)=\frac{1}{\sqrt{13}}(-3,0,2)
\end{aligned}
$$

$$
\begin{aligned}
& C=\int_{0}^{1}\left\|-r^{\prime}\right\| d t=\int_{0}^{1} \sqrt{q+16}=\delta \cdot(1-0)=5
\end{aligned}
$$

i) If $r(t)=<4 t, 3 \cos (t), 3 \sin (t)>$, find the arc length of the curve between 0 and $\frac{\pi}{2}$

$$
L=\int_{0}^{\alpha / 2}\|r\| d b=\int_{0}^{\sigma / 2} \sqrt{G+A} d A=\frac{5 \pi}{2}
$$

j) If $r(t)=<2 t^{2}, 3 t-1, \cos (t)>$, find the arc length of the curve between 0 and π (Hint: if the integration becomes tricky, try Wolfram Alpha)

$$
C=\int_{0}^{\pi}\|r\| d t=\int_{0}^{\infty} \sqrt{16 t^{2}+9+\sin ^{2}(k)} d d=22,8
$$

k) Find the curvature of $r(t)=\left\langle t, 3 t^{2}, \frac{t^{2}}{2}>\right.$

$$
\begin{aligned}
& \left.\left.r^{\prime}(\vec{f})=<1,6 t, t\right) \quad r^{\prime \prime}(t)=<0,6,1\right) \\
& X=\frac{\left\|r^{6} \times r^{n}\right\|}{\|r\|^{3}}\left(\sqrt{(0,-6) \|}{\left.\sqrt{1+37 t^{6}}\right)^{3}}_{\left(1+2+t^{3}\right)^{3 / 2}}^{(\sqrt{34}}\right.
\end{aligned}
$$

8. Picture: Sketch the circle that fits the graph below the best at the points $(0,0)$ and $(3,3)$. At which of the two points is the curvature smaller? Also sketch the unit tangent and unit normal for $(3,3)$.

9. Picture: Sketch the unit tangent, normal, and binormal to the curve $<\cos (\mathrm{t}), \sin (\mathrm{t}), \mathrm{t}>$ as best as possible, when time $t=0$. A sketch suffices, you don't have to compute the actual vectors:

10. Picture: Match the following functions to their corresponding plots.

11. Prove the following facts:
a) Show that $u \times v=-(v \times u) \quad u_{2}\left\langle\left\langle u_{1} u_{2}, u_{3}\right), v=\left\langle v_{1}, v_{2}, v_{3}\right)\right.$

$$
\begin{aligned}
\Rightarrow & U_{1} \times v
\end{aligned}=\left\langle u_{2} v_{3}-u_{3} v_{2}, u_{3} v_{1}-u_{1} v_{3}, u_{1} v_{2}-u_{2} v_{1}\right\rangle .
$$

b) Show that $u \cdot(v \times u)=0$

Che es above $u_{0}\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $v=\left\langle v_{1,} v_{2}, v_{3}\right\rangle$ and work ow t U. $(v \times u)$ censfully.
c) Show that if $y=f(x)$ is a function that is twice continuously differentiable, then the curvature

$$
\begin{aligned}
& \text { of } f \text { at a point } x \text { is } K=\frac{\left|f^{\prime \prime}(x)\right|}{\left(1+\left[f^{\prime}(x)\right]^{2}\right)^{3 / 2}} \\
& y=f(x)> \\
& r(h)=C h(f), 0) \\
& \Rightarrow \frac{\left\|r^{l} \times r^{4}\right\|}{\left\|r^{\prime}\right\|^{3}}=\frac{l^{\prime \prime}(f) \mid}{\left(l+\left[f^{\prime}(f)\right)^{2}\right]^{3 / 2}} \\
& \operatorname{nr}(h)=\langle 1, f(1,0) \\
& \left.f^{\prime \prime}(k)=<O_{l} f^{\prime \prime}(l)_{l} O\right)
\end{aligned}
$$

d) Prove that the curvature of a line in space is zero

$$
\begin{aligned}
& l(t)=\left\langle a_{1} b_{1} c\right)+f\left(v_{1}, v_{2}, v_{3}\right)= \\
& l^{\prime}(k)=\left\langle v_{1}, v_{2}, v_{3}\right) \Rightarrow x=\frac{\| b^{1} \times b^{4}}{l^{\prime} \|^{3}} \|=0 \\
& l^{\prime \prime}(k)=\left\langle 0_{2} 0_{1}, 0\right\rangle
\end{aligned}
$$

13. Here are a few miscellaneous questions:
a) In the definition of unit tangent to a curve $r(t)$ we specify that the curve must be smooth. Why?
b) If two lines in three dimensional space are not parallel, do they have to intersect?
No.
d) The curvature of a parabola is largest at its vertex, as we mentioned in class. Where, do you think, is the curvature of a simple $3^{\text {rd }}$ degree polynomial $y=x^{3}$ the largest?

