Practicing Partial and Anti-Partial Derivatives

1. Let $f(x, y)=3 x y^{3}+2 x^{2} y$
a. Find f_{x}
b. Find $\frac{\partial^{2} f}{\partial x \partial y}$
c. Compute ∇f
2. Let $g(x, y, z)=x y \tan \left(x^{2} y^{3} z^{4}\right)$. Compute ∇g
3. Consider $h(x, y, z, w)=2 x y-3 y z+4 z w-5 x w$. Compute $h_{x y z w}$
4. Let $f(x, y)=\frac{x y \sin (x y)}{\cos (x y)}$. Find f_{x} and f_{y}
5. Consider $f(x, y)=\frac{x}{y}$. Find $f_{x x}, f_{y y}, f_{x y}$, and $f_{y x}$ and confirm that $f_{x y}=f_{y x}$
6. Compute $\iint 2 x y^{2}+3 x^{2} y d x d y$
7. Find $\int_{1}^{2} \int_{\ln (2)}^{\ln (3)} x e^{y} d y d x$
8. Compute $\int_{0}^{1} \int_{0}^{2} \int_{0}^{3} x y+y z+x z d x d y d z$
9. Find $\int_{0}^{2} \int_{1}^{3} 6 x y^{2} d y d x$ and $\int_{1}^{3} \int_{0}^{2} 6 x y^{2} d x d y$
10. Evaluate $\int_{e}^{e^{2}} \int_{0}^{1} \frac{x}{y} d x d y$
11. Find $\int_{0}^{1} \int_{0}^{1} x \sin (x y) d x d y$ and $\int_{0}^{1} \int_{0}^{1} x \sin (x y) d y d x$. Which way, if any, is easier?
