## Some Contour Integrals

$\int_{C} x+y^{2} d s$ where C is a line segment given by $r(t)=<3 t, 4 t>, 0 \leq t \leq 1$
$\int_{C} F \cdot d r$ where $F(x, y)=<2 x y^{3}-2 x y+1,3 x^{2} y^{2}-x^{2}>$ and $C$ is the lower half of the unit circle, from $(-1,0)$ to $(1,0)$.
$\oint_{C}\left(x y^{2}+e^{y}\right) d x+\left(x^{2} y+x e^{y}\right) d y, \mathrm{C}=$ unit circle
$\oint_{C}\left(e^{y}-x^{2} y\right) d x+\left(x y^{2}+x e^{y}\right) d y, \mathrm{C}=$ unit circle
$\int_{(-1,0)}^{(0,1)}\left(3 x^{2}+2 y\right) d x+(2 x-2 y) d y$
$\int_{C} 3 x^{2}-7 y x d s, C$ line from $(0,1)$ to $(2,3)$
$\int_{C}\langle y, z, x\rangle d \vec{r}, C$ line from $(1,1,1)$ to $(2,3,4)$
$\oint<y, z, x\rangle d \vec{r}, \mathrm{C}$ circle in yz plane at $\mathrm{x}=3$

