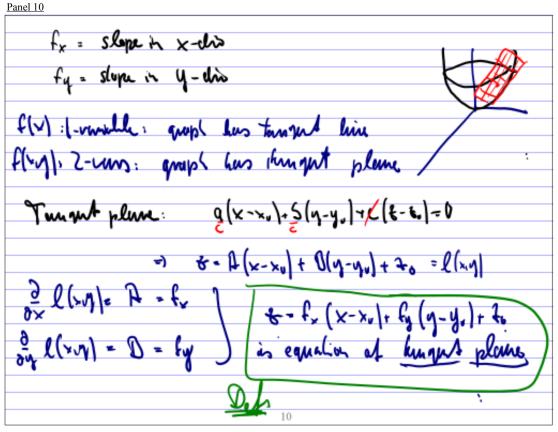


Panel 7	
Ex: Let f(x, y, z) = x y & sin (z) . Find	
3 x 9 y = 1 x y = ((x) y	
33t C = xh 21/15/1- xh+ co(5)	
0+ 2 y2 + + + + + + + + + + + + + + + + +	
tryn = 0	
7 Panel 8	


Panhal derivatives frequently occur in Physics to describe laws of nature as PDEs (parhal differential equations). For example: the Laplace PDE

32 U+32 u= (lex+ Um) = ()

is important in heat conduction and fluid flow.

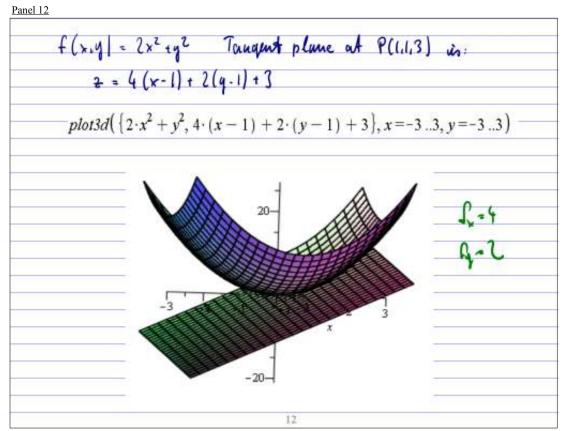
Ex: Show that $f(x,y) = e^x \sin(y)$ sales his the above PDE $f_x = e^x \sin(y)$, $f_{xx} = e^x \sin(y)$ $f_{xx} = e^x \sin(y)$ $f_{xx} + f_{yy} = f_{yy$

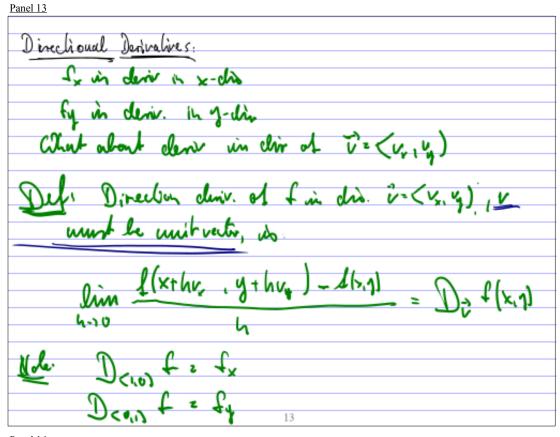
Panel 9	(x,y = sin (x) coshly)	mmonic ?
feall cosh	(f) = {e+ e+	of cosh(1)= such(t)
sinl	(1)= {(e+-e-+)	of sur(1) = cor(1)
Harmonic un	ems: solves Laplan	9DE!
{x = cov(x	Un (14) for = - six	[x] cox(y)
fy = sin(x)	sinh(1) type sul	x) cosh(g)
Yes: +2	hermonics i.o. solve	Coplace PDE
•		
	9	

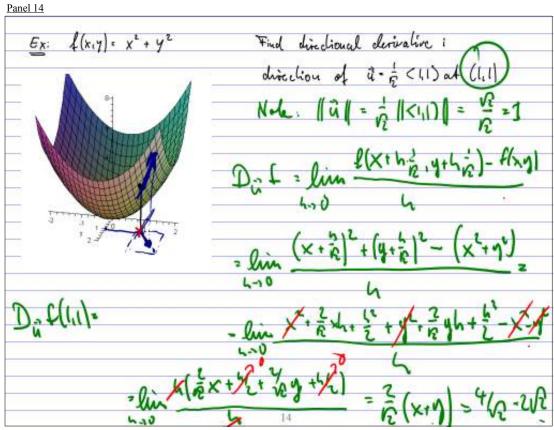
<u>Panel 11</u>

Equation of languat plane to
$$f(x,y)$$
 at (x_0,y_0) vis:

$$f = \left(\frac{1}{x_0} \frac{|x_0,y_0|}{|x_0,y_0|} \frac{|x_0,y_0|}{|x_0,y_0|} \frac{|y_0|}{|y_0|} + \frac{1}{60}\right)$$


$$f = \left(\frac{1}{x_0} \frac{|x_0,y_0|}{|x_0|} \frac{|x_0,y_0|}{|x_0|} + \frac{1}{60}\right)$$


$$f = \left(\frac{1}{x_0} \frac{|x_0|}{|x_0|} \frac{|x_0|}{|x_0|} + \frac{1}{60}\right)$$


$$f = \left(\frac{1}{x_0} \frac{|x_0|}{|x_0|} \frac{|x_0|}{|x_0|} + \frac{1}{60}\right)$$

$$f = \left(\frac{1}{x_0} \frac{|x_0|}{|x_0|} \frac{|x_0|}{|x_0|} + \frac{1}{60}\right)$$

$$f = \left(\frac{1}{x_0} \frac{|x_0|}{|x_0|} + \frac{1}{60}\right)$$

Thu	: Suppose is - <ab) a="" is="" th="" then<="" unit="" vector.=""></ab)>
	Da f (x,y) =
<u>Ex</u> ;	f(x,y)=x2+y2, Q= 1 <1,1). Find Daf(x,y) of (1,1)
Dc	t= < f, ly). (u, u)=
	- (2x, 24)-1 ((1) = 1 (2x 1+ 2y-1) - 2 (x-1)

15

Panel 16

$$\frac{E_{X}}{E_{X}} : f(x_{1}y) = x^{3} - 3xy + 4y^{2}. \text{ find directional derivative}$$
in the elization of $Cos(\sqrt[n]{t}, sin(\sqrt[n]{t}))$

$$D_{u}(f) = \lim_{h \to 0} \frac{f(x_{1} h \cdot cn(\sqrt[n]{t}), y_{1} h \cdot sin(\sqrt[n]{t}) - f(x_{1})}{h}$$

$$\frac{E_{X}}{E_{X}} : f(x_{1}y) = x^{3} - 3xy + 4y^{2}. \text{ find directional derivative}$$

$$\frac{E_{X}}{E_{X}} : f(x_{1}y) = x^{3} - 3xy + 4y^{2}. \text{ find directional derivative}$$

$$\frac{E_{X}}{E_{X}} : f(x_{1}y) = x^{3} - 3xy + 4y^{2}. \text{ find directional derivative}$$

$$\frac{E_{X}}{E_{X}} : f(x_{1}y) = x^{3} - 3xy + 4y^{2}. \text{ find directional derivative}$$

$$\frac{E_{X}}{E_{X}} : f(x_{1}y) = x^{3} - 3xy + 4y^{2}. \text{ find directional derivative}$$

$$\frac{E_{X}}{E_{X}} : f(x_{1}y) = x^{3} - 3xy + 4y^{2}. \text{ find directional derivative}$$

$$\frac{E_{X}}{E_{X}} : f(x_{1}y) = x^{3} - 3xy + 4yy^{2}. \text{ find directional derivative}$$

$$\frac{E_{X}}{E_{X}} : f(x_{1}y) = x^{3} - 3xy + 4yy^{2}. \text{ find directional derivative}$$

$$\frac{E_{X}}{E_{X}} : f(x_{1}y) = x^{3} - 3xy + 4yy^{2}. \text{ find directional derivative}$$

$$\frac{E_{X}}{E_{X}} : f(x_{1}y) = x^{3} - 3xy + 4yy^{2}. \text{ find directional derivative}$$

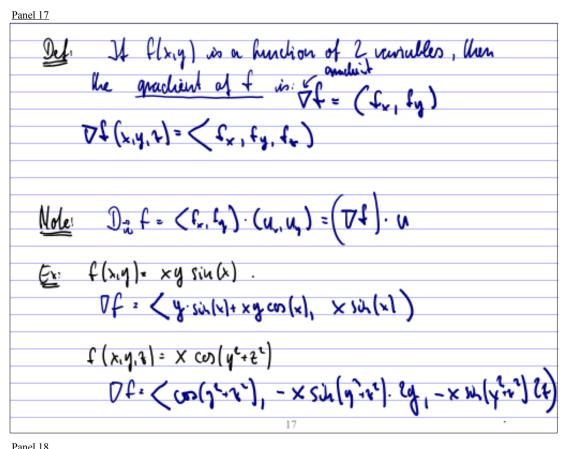
$$\frac{E_{X}}{E_{X}} : f(x_{1}y) = x^{3} - 3xy + 4yy^{2}. \text{ find directional derivative}$$

$$\frac{E_{X}}{E_{X}} : f(x_{1}y) = x^{3} - 3xy + 4yy^{2}. \text{ find directional derivative}$$

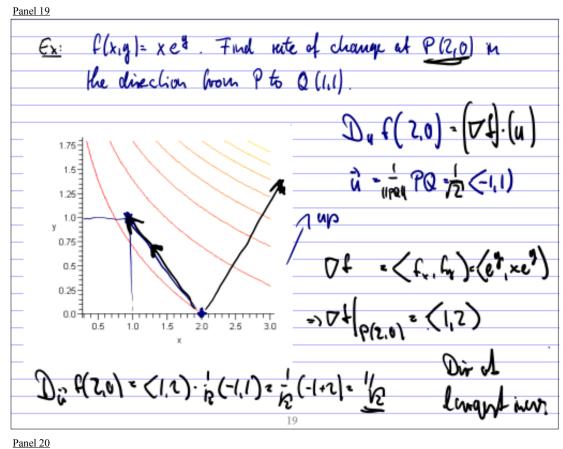
$$\frac{E_{X}}{E_{X}} : f(x_{1}y) = x^{3} - 3xy + 4yy^{2}. \text{ find directional derivative}$$

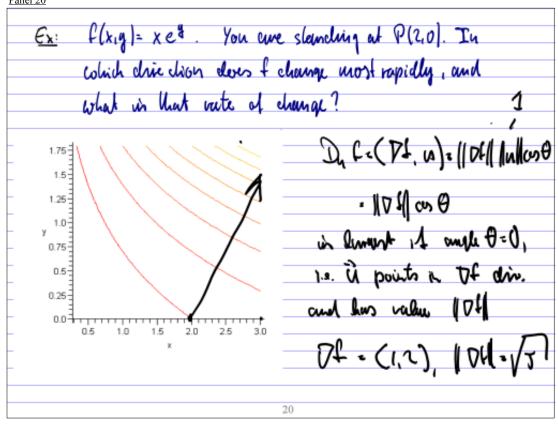
$$\frac{E_{X}}{E_{X}} : f(x_{1}y) = x^{3} - 3xy + 4yy^{2}. \text{ find directional derivative}$$

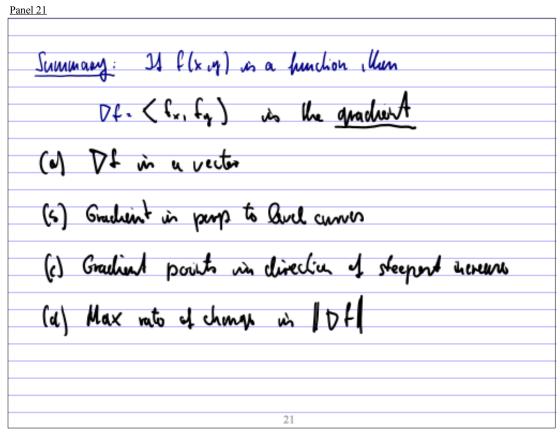
$$\frac{E_{X}}{E_{X}} : f(x_{1}y) = x^{3} - 3xy + 4yy^{2}. \text{ find directional derivative}$$

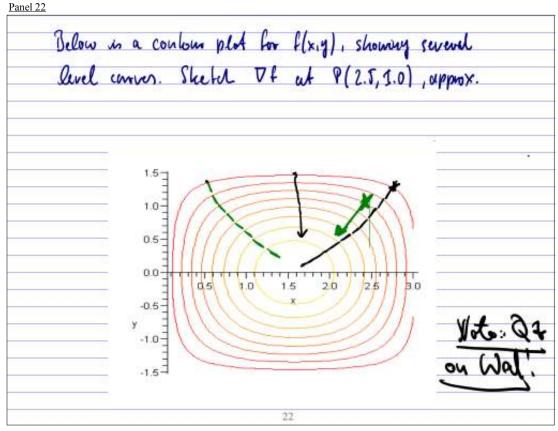

$$\frac{E_{X}}{E_{X}} : f(x_{1}y) = x^{3} - 3xy + 4yy^{2}. \text{ find directional derivative}$$

$$\frac{E_{X}}{E_{X}} : f(x_{1}y) = x^{3} - 3xy + 4yy^{2}. \text{ find directional derivative}$$


$$\frac{E_{X}}{E_{X}} : f(x_{1}y) = x^{3} - 3xy + 4yy^{2}. \text{ find directional derivative}$$


$$\frac{E_{X}}{E_{X}} : f(x_{1}y) = x^{3} - 3xy + 4yy + 4yy^{2}. \text{ find directional derivative}$$


$$\frac{E_{X}}{E_{X}} : f(x_{1}y) = x^{3} - 3xy + 4yy + 4yy$$



141110
Recall: Dof = Df. u = 1 Df u cs (0) = 1 Df cs O
Theorem: The max. value of Di (f) in 104/1 and
is afferned if it points in direction of DF
18

