Definitions and Concepts:

- Vector, Angle between two vectors, Unit vector
- Tangent vector to a curve, normal vector to a curve, binormal vector
- Velocity, speed, and acceleration, tangential and normal component of acceleration
- Lines, planes, and distances
- Limit of a function $z=f(x, y)$
- Continuity of a function $z=f(x, y)$
- partial derivative of a function $\mathrm{f}(\mathrm{x}, \mathrm{y})$
- gradient and its properties, curl and divergence
- the procedure to find relative extrema of a function $f(x, y)$
- double and triple integrals, including polar coordinates
- What does it mean when a "line integral of a vector field F is independent of the path"?
- What is Green's Theorem?
- What is Gauss' Theorem?
- For what type of surface can you apply the Divergence theorem?

Picture problem: Match the following pictures with the algebraic expressions below.
[A]

[B]

[C]

[D]

(1) $f(x, y)=x^{2}+y^{2}$
(2) $f(x, y)=x^{2}-y^{2}$
(3) $r(t)=\langle\cos (t), \sin (t), t\rangle$
(4) $r(t)=\langle\cos (t), t, \sin (t)\rangle$
(5) $F(x, y)=\langle x, y\rangle$
(6) $F(x, y)=\langle 1, x\rangle$

Vectors: Suppose $u=\langle 7,-2,3\rangle, v=\langle-1,4,5\rangle$, and $w=\langle-2,1,-3\rangle$

- Are u and v orthogonal, parallel, or neither?
- Find the (\cos of the) angle between v and w
- Find $u \cdot v$ (dot product), $u \times v$ (cross product), $u \cdot(v \times w)$, and $\|u\|$
- Find the projection of w onto u and the projection of u onto w

Lines and Planes

- Find the equation of the plane spanned by $\langle 1,3,-2\rangle$ and $<2,1,2\rangle$ through the point $P(1,2,3)$
- Find the equation of the plane through $P(1,2,3), Q(1,-1,1)$, and $R(3,2,1)$
- Find the equation of the plane parallel to $x-y+z=2$ through $P(0,2,0)$
- Find the equation of the line through $P(1,2,3)$ and $Q(1,-1,1)$
- Some distance questions

Vector valued functions:

- If $r(t)=<4 t, t^{2}, t^{3}>$, find $r^{\prime}(t), r^{\prime \prime}(t), \frac{d}{d t}\|r(t)\|$
- If $r(t)=<e^{t}, 3 t^{3}, \frac{3}{6 t}>$ some curve, find $\int_{1}^{2} r(t) d t$
- If $r(t)=<t, \frac{1}{t}>$, find $T(t), N(t), a_{t}$ and a_{n}
- Repeat (e) for $r(t)=<e^{t} \cos (t), e^{t} \sin (t)>$ for $t=\frac{\pi}{2}$

Motion in space:

- If $r(t)=<t, 3 t^{2}, \frac{t^{2}}{2}>$ represents the position vector of a particle, find the velocity, speed, and acceleration, as well as tangential and normal components of the acceleration
- A baseball is hit 3 feet above ground at 100 feet per second and at an angle of $\mathrm{Pi} / 4$ with respect to the ground. Find the maximum height reached by the baseball. Will it clear a 10 -foot high fence located 300 feet from home base?
Limits and Continuity: Determine the following limits as $(x, y)->(0,0)$, if they exist.

$$
\begin{array}{lll}
\lim _{(x, y) \rightarrow(0,0)} \frac{x y+1}{x^{2}+y^{2}+1} & \lim _{(x, y) \rightarrow(0,0)} \frac{x y+1}{x^{2}+y^{2}} & \lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}} \\
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{2}+y^{2}} & \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}} &
\end{array}
$$

Gradient and Friends. Find the indicated expressions:
(a) If $f(x, y, z)=y e^{x}+x \ln (y)+z^{3}$, find ∇f (i.e. the gradient of f)
(b) If $F(x, y, z)=\left\langle x-x^{2} y, y^{2} x, x^{5} y-z\right\rangle$, find $\operatorname{div}(f)$ (i.e. the divergence of f)
(c) If $F(x, y, z)=\left\langle\left(2 z^{2} x\right),\left(x^{2} y\right),\left(z^{2}+x^{2}\right)\right\rangle$, find $\operatorname{curl}(f)$

Differentiation: Find the indicated derivatives for the given function:

- Suppose $f(x, y)=2 x^{3} y^{2}+2 y+4 x$, find $\mathrm{f}_{\mathrm{x}}, \mathrm{f}_{\mathrm{y}}, \mathrm{f}_{\mathrm{xx}}, \mathrm{f}_{\mathrm{xy}}, \mathrm{f}_{\mathrm{yy}}, \mathrm{f}_{\mathrm{yx}}, \mathrm{f}_{\mathrm{xyy}}, \mathrm{f}_{\mathrm{yx}}$, and $\mathrm{f}_{\mathrm{yyx}}$
- Suppose $f(x, y)=x^{2} e^{y}$. Find the maximum value of the directional derivative at $(-2,0)$ and compute a unit vector in that direction.
- Use the definition of f_{x} to find it

Max/Min Problems: Compute the relative extrema for $f(x, y)=3 x^{2}-2 x y+y^{2}-8 y$ and $f(x, y)=4 x y-x^{4}-y^{4}$.

Conservative vector fields: TBA

Integration: Find the following integrals. You may use Maple to help you out.

- $\int_{0}^{2} \int_{x^{2}}^{x}\left(x^{2}+2 y\right) d y d x$
- $\int_{-3}^{3} \int_{0}^{\sqrt{9-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x$
- evaluate $\iint_{R} \frac{y}{x^{2}+y^{2}}$ where R is a triangle bounded by $y=x, y=2 x, x=2$
- $\iint_{R} e^{x^{2}} d A$ where R is the triangular region bounded by $\mathrm{y}=0, \mathrm{y}=\mathrm{x}$, and $\mathrm{x}=1$
-
- $\int_{C} x+y^{2} d s$ where C is a line segment given by $r(t)=<3 t, 4 t>, 0 \leq t \leq 1$
- $\int_{C} F \cdot d r$ where $F(x, y)=<-y, x>$ and C is the curve given by $r(t)=<2 \cos (t), 2 \sin (t)>, 0 \leq t \leq \pi$
- Find the work done by a force field $F(x, y, z)=\langle-x,-y, 2\rangle$ on a particle as it moves along the helix C given by $r(t)=<\cos (t), \sin (t), t>, 0 \leq t \leq 3 \pi$
- $\int_{C} y^{2} d x+x d y$ where C is the curve $r(t)=<\left(t^{2}-1\right), t>,-1 \leq t \leq 1$
- $\int_{C} F \cdot d r$ where $F(x, y)=<2 x y^{3}+y \sin (x), 3 x^{2} y^{2}-\cos (x)>$ and C is the boundary of the square with corner point $(0,0),(1,0),(1,1)$, and $(0,1)$, oriented counter-clockwise.
- $\int_{C} F \cdot d r$ where $F(x, y)=<2 x y^{3}-2 x y+1,3 x^{2} y^{2}-x^{2}>$ and C is the lower half of the unit circle, from $(-1,0)$ to $(1,0)$.
- $\int_{C}\left(3 x^{2} y-y^{3}\right) d x+x^{3} d y$ where C is the boundary of the square with corner point $(0,0),(1,0),(1,1)$, and (0,1), oriented counter-clockwise.
- Find the surface integral $\iint_{S} x-2 y+z d S$, where S is the surface $z=10-2 x+2 y$ such that x is between 0 and 2 and y is between 0 and 4 .
- Evaluate the flux integral $\iint_{S} \vec{F} \cdot \vec{n} d S$ where $F(x, y, z)=<x, y, z>$ and S is $x^{2}+y^{2}+z^{2}=4$

