Math 2511: Calc III - Practice Exam 3

- 1. State the meaning or definitions of the following terms:
 - a) vector field, conservative vector field, potential function of a vector field, volume, length of a curve, work, surface area, flux integral
 - b) curl and divergence of a vector field F, gradient of a function
 - c) $\iint_R dA$ or $\iint_R f(x, y) dA$ or $\iiint_Q f(x, y, z) dV$
 - d) $\iint_{R} dS$ or $\int_{C}^{R} ds$ or $\int_{C}^{R} f(x, y) ds$ or $\int_{C}^{R} f(x, y) dx$ or $\int_{C}^{R} f(x, y) dy$ or $\iint_{S}^{R} g(x, y, z) dS$
 - e) $\int_{C} \vec{F} \cdot d\vec{r}$ or $\iint_{S} \vec{F} \cdot \vec{n} dS$
 - f) $\int_C M(x, y, z)dx + N(x, y, z)dy + P(x, y, z)dz$
 - g) What does it mean when a "line integral is independent of the path"?
 - h) State the Fundamental Theorem of Line Integrals. Make sure to know when it applies, and when it helps.
 - i) State Green's Theorem. Make sure to know when it applies, and in what situation it helps.
 - j) State Gauss' Theorem. Make sure to know when it applies, and in what situation it helps.
- 2. Below are four algebraic vector fields and four sketches of vector fields. Match them.

- (1) $F(x, y) = \langle x, y \rangle$, (2) $F(x, y) = \langle -y, x \rangle$, (3) $F(x, y) = \langle x, 1 \rangle$, (4) $F(x, y) = \langle 1, y \rangle$
- b) Below are two vector fields. Which one is clearly not conservative, and why?

- c) Say in the vector field [C] above you integrate over a straight line from (0,-1) to (-1,0). Is the integral positive, negative, or zero?
- 3. Are the following statements true or false:
 - a) If the divergence of a vector is zero, the vector field is conservative.
 - b) If F(x, y, z) is a conservative vector field then curl(F) = 0
 - c) If a line integral is independent of the path, then $\int_C F \cdot dr = 0$ for every path C
 - d) If a vector field is conservative then $\int_C F \cdot dr = 0$ for every closed path C

- e) $\iint_R dA$ denotes the surface area of the region R \mathcal{F} (coequive) f) $\iint_R dS$ denotes the volume of the region R
- g) Can you apply the Fundamental Theorem of line integrals for the function $f(x, y, z) = xy \sin(z) \cos(x^2 + y^2)$?
- h) Can you apply the Fundamental Theorem of line integrals for the vector field $F(x, y) = <6xy^2 - 3x^2, 6x^2y + 3y^2 - 7 > ?$
- Can you apply Green's theorem for a curve C, which is a straight line from (0,0,0) to (1,2,3)?
- Can you apply the Divergence theorem to the plane x+y+z=1 over $[-1, 1] \times [-1, 1]$?
- Suppose that $F(x, y, z) = \langle x^3y^2z, x^2z, x^2y \rangle$ is some vector field.
 - a) Find div(F) $3x^2v^2z$
 - b) Find curl(F) $(x^3y^2 - 2xy)\overline{e}_v + (2xz - 2x^3yz)\overline{e}_z$
 - c) Find curl(curl(F)) $-2x^3z\overline{e}_x + (-2z + 6x^2yz)\overline{e}_y + (3x^2y^2 - 2y)\overline{e}_z$
 - d) Find div(curl(F)) 0
 - grad., div., and curl of the vector field if appropriate for $\langle x^2, y^2, z^2 \rangle$ grad = n/a, div = 2x+2y+2z, curl = 0
 - grad., div., and curl of the vector field if appropriate for $\langle \cos(y) + y \cos(x), \sin(x) x \sin(y), xyz \rangle$ grad = n/a, div = $-y \sin(x) - x \cos(y) + xy$, curl = $(xz)\overline{e}_x - yz\overline{e}_y$
 - grad., div., and curl of the vector field if appropriate for $f(x, y, z) = z \ln(x^2 + y^2)$ grad = $\frac{2zx}{x^2+y^2}\overline{e}_x + \frac{2zy}{x^2+y^2}\overline{e}_y + (\ln(x^2+y^2))\overline{e}_z$
- 5. Decide which of the following vector fields are conservative. If a vector is conservative, find its potential function
 - a) $F(x, y) = \langle 2xy, x^2 \rangle$ conservative $\int |x|^{4} = x^{2}y + C$
 - b) $F(x, y) = \langle e^x \cos(y), e^x \sin(y) \rangle$ Not conservative
 - c) $F(x, y, z) = \langle \sin(y), -x \cos y, 1 \rangle$ Not conservative
 - d) $F(x, y, z) = \langle 2xy, x^2 + z^2, 2zy \rangle$ by $f(x, y, z) = \langle 2xy, x^2 + z^2, 2zy \rangle$
 - e) $F(x, y) = <6xy^2 3x^2.6x^2y + 3y^2 7$

$$f = 3x^2 y^2 - x^3 + y^3 - 7x + C$$

- f) $F(x, y) = <-2y^3 \sin(2x), 3y^2(1 + \cos(2x) >$
- g) $F(x, y) = \langle 4xy + z, 2x^2 + 6y, 2z \rangle$ $0_x 0_y 0_1$ Not conservative $\langle x, y \rangle = \langle x, y \rangle = \langle$
- h) $F(x, y) = \langle 4xy + z^2, 2x^2 + 6yz, 2xz \rangle$ Not conservative
- 6. Evaluate the following integrals:
 - a) $\iint \cos(x^2) dA$ where R is the triangular region bounded by y = 0, y = x, and x = 1

- where K is the triangular region bounded by y = 0, $y = \frac{1}{2} \sin(x^2) dx = \frac{1}{2} \sin(1)$
- b) $\iint_R dS$, where S is the portion of the hemisphere $f(x, y) = \sqrt{25 x^2 y^2}$ that lies above the circle

$$\int_{\mathbb{R}^{2}} |x^{2} + y^{2} \le 9$$

$$\int_{\mathbb{R}^{2}} |x|^{2} + |y|^{2} = 9$$

$$\int_{\mathbb{R}^{2}} |x|^{2} + |y|^{2} + |y|^{2} = 9$$

$$\int_{\mathbb{R}^{2}} |x|^{2} + |y|^{2} = 9$$

$$\int_{\mathbb{R}^{2}} |x|^{2} + |y|^{2} = 9$$

$$\int_{\mathbb{R}^{2}} |x|^{2} + |y|^{2} + |y|^{2} = 9$$

$$\int_{\mathbb{R}^{2}} |x|^{2} + |y|^{2} = 9$$

- c) $\int_C x^2 y + 3z ds$ where C is a line segment given by $r(t) = \langle t, 2t, 3t \rangle$, $0 \le t \le 1$
- d) $\int_{C} F \cdot dr$ where $F(x, y) = \langle y, x^{2} \rangle$ and C is the curve given by $r(t) = \langle 4 t, 4t t^{2} \rangle$, $0 \le t \le 3$ $\int_{C} Y dx + x^{2} dy = \int_{C}^{3} (4t t^{2}) (-t) dt + (4 t)^{2} (4 2t) dt = \frac{15}{2}$

$$\int_0^3 \left(-4t + t^2 + \left(4 - t^2\right) \left(4 - 2t\right)\right) dt = \frac{15}{2}$$

e) $\int_C y dx + x^2 dy$ where C is a parabolic arc given by $r(t) = \langle t, 1 - t^2 \rangle$, $-1 \le t \le 1$

- f) $\iint_{S} (x+z)dS \text{ where S is the first-octant portion of the cylinder } y^{2}+z^{2}=9 \text{ between } x=0 \text{ and } x=4$ $Con_{S} \text{ where S is the first-octant portion of the cylinder } y^{2}+z^{2}=9 \text{ between } x=0 \text{ and } x=4$
- g) Find the flux of the vector field $F(x, y, z) = \langle x, y, z \rangle$ through the surface given by potion of the paraboloid $z = 4 x^2 y^2$ that lies above the xy-plane. Note that this surface is *not* closed.

- 7. For the following line integrals there is a short-cut you can use to simplify your computations (but justify your shortcut by quoting the appropriate theorem)
 - a) $\int_{C} F \cdot dr \text{ where } F(x, y, z) = \langle e^{x} \cos(y), -e^{x} \sin(y) \rangle \text{ and C is the curve } r(t) = \langle 2\cos(t), 2\sin(t) \rangle,$ $0 \le t \le 2\pi$

b) $\int_C 2xyzdx + x^2zdy + x^2ydz$ where C is some smooth curve from (0,0,0) to (1,4,3)

- c) $\int_{C} F \cdot dr$ where $F(x, y) = \langle y^{3} + 1, 3xy^{2} + 1 \rangle$ and C is the upper half of the unit circle, from (1,0) to (-1,0). $= \left(\left(-l_{1}0 \right) f(l_{1}0) \right) = -2 \quad \text{there} \quad f(xy) = 2 \quad \text{for all finite}$
- d) $\int_C F \cdot dr$ where $F(x, y) = \langle y^3 x, 3xy^2 \rangle$ and C is the line segment from (-1,0) to (2,3).

e) $\int_C y^3 dx + \underbrace{(x^3 + 3xy^2)} dy$ where C is the path from (0,0) to (1,1) along the graph of $y = x^3$ and from (1,1) to (0,0) along the graph of y = x.

Green:
$$\iint_{\mathbb{R}} 3x^2 + 3y^2 - 3y^2 dA = 3\iint_{0 \times 2} x^2 dy dx = \frac{1}{4}$$

f) $\iint_{S} \overrightarrow{F} \cdot \overrightarrow{n} \, dS \text{ where } F(x, y, z) = \langle x, y, z \rangle \text{ and S is } x^{2} + y^{2} + z^{2} = 4$

- 8. Green's Theorem
 - a) Use Green's theorem to find $\int_C F \cdot dr$ where $F(x, y) = \langle y^3, x^3 + 3xy^2 \rangle$ and C is the circle with radius 3, oriented counter-clockwise (You may need the double-angle formula for cos somewhere during your computations)

$$\iint_{\mathbb{R}} 3x^2 + 3y^2 - 9y^2 dA = \iint_{0} 3r^2 \cos^2\theta r dr d\theta = 24$$

b) Evaluate $\iint_{R} dA$ where R is the ellipse $\frac{x^{2}}{4} + \frac{y^{2}}{9} = 1$ by using a vector field $F(x, y) = \langle -\frac{y}{2}, \frac{x}{2} \rangle$ and the boundary C of the ellipse R.

$$\iint_{\frac{1}{2}-(-\frac{1}{2})dt^{2}} \int_{-\frac{1}{2}}^{-\frac{1}{2}} \int_{\frac{1}{2}}^{\frac{1}{2}} \int_{\frac{1}{2}}^{\frac{1}{2}} \int_{-\frac{1}{2}}^{\frac{1}{2}} \int_{-\frac{1}{2}}^{\frac$$

- 9. Evaluate the following integrals. You can use any theorem that's appropriate:
 - c) $\int_C 2xyzdx + x^2zdy + x^2ydz$ where C is a smooth curve from (0,0,0) to (1,4,3)

d)
$$\int_C y dx + 2x dy$$
 where C is the boundary of the square with vertices $(0,0)$, $(0,2)$, $(2,0)$, and $(2,2)$

Grew $\int_C 2 - |Q| dx = 0$ are $(square) = 4$

e) $\int_{C} xy^{2}dx + \underline{x^{2}}ydy$, where C is given by $r(t) = \langle 4\cos(t), 2\sin(t) \rangle$, t between 0 and 2 Pi.

Gree $\int_{C} xy^{2}dx + \underline{x^{2}}ydy$, where C is given by $r(t) = \langle 4\cos(t), 2\sin(t) \rangle$, t between 0 and 2 Pi.

f) $\int_C xy dx + x^2 dy$ where C is the boundary of the region between the graphs of $y = x^2$ and y = x.

- 10. Prove the following:
- a) If $F(x, y, z) = \langle M(x, y, z), N(x, y, z), P(x, y, z) \rangle$ is any vector field where M, N, P are twice continuously differentiable then div(curl(F)) = 0

b) A function (not a vector field) f(x, y, z) is called harmonic if $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0$. Show that for any function f(x, y, z) the function $\frac{1}{f(x, y, z)}$ is harmonic.