\qquad

Quiz

1. Answer the following questions and provide a reason for your answer:
a) Can you apply the Fundamental Theorem of line integrals to the function $f(x, y, z)=x y \sin (z) \cos \left(x^{2}+y^{2}\right)$?
b) Can you apply the Fundamental Theorem of line integrals to the vector field

$$
\vec{F}(x, y)=<6 x y^{2}-3 x^{2}, 6 x^{2} y+3 y^{2}-2 x^{3}>?
$$

c) Can you apply Green's theorem to a curve C, which is a straight line from $(0,0,0)$ to $(1,2,3)$?
2. Evaluate the following integrals, using whatever method/shortcut you think is most appropriate (including Maple):
a) $\int_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}(x, y)=<y, x^{2}>$ and C is the curve given by $\vec{r}(t)=<4-t, 4 t-t^{2}>, 0 \leq t \leq 3$
b) $\int_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}(x, y)=<e^{x} \cos (y),-e^{x} \sin (y)>$ and C is the curve $\vec{r}(t)=<2 \cos (t), 2 \sin (t)>, 0 \leq t \leq 2 \pi$
c) $\int_{C} 2 x y z d x+x^{2} z d y+x^{2} y d z$ where C is some smooth curve from $(0,0,0)$ to $(1,4,3)$
d) $\int_{C} y^{3} d x+\left(x^{3}+3 x y^{2}\right) d y$ where C is the path from $(0,0)$ to $(1,1)$ along the graph of $y=x^{3}$ and from (1,1) back to $(0,0)$ along the graph of $y=x$.
e) $\int_{C} y d x+2 x d y$ where C is the boundary of the square with vertices $(0,0),(0,2),(2,0)$, and $(2,2)$

