Panel 1

Find a conservative vector field that has the given potential:

$$f(z, y, z) = \sin(x^2 + y^2 + z^2)$$

Find $div(\mathbf{V} \cdot F)$ and $curl(F) = \nabla \times F$

$$F(x, y, z) = \langle x^2 z, y^2 x, y + 2z \rangle$$

Evaluate
$$\int_C (x-y)dx + xdy$$
 if C is the graph of $y^2 = x$ from (4,-2) to (4,2)

Find the work done by $F(\underline{x},\underline{y},\underline{z})$ along the curve $\langle t,t^2,t^3\rangle$ from (0,0,0) to (2,4,8), where $F(x,y,z)=\langle y,z,x\rangle$

Check which of the following vector fields is not conservative.

$$F(x, y) = <3x^2y + 2, x^3 + 4y^3 >$$

$$F(x, y) = \langle e^x, 3 - e^x \sin(y) \rangle$$

$$F(x, y, z) = <8xz, 1-6yz^2, 4x^2-9y^2z^z>$$

Show that the line integrals are independent of the path, and find their value:

$$\int_{(-1,2)}^{(3,11)} (y^2 + 2xy)dx + (x^2 + 2xy)dx$$

$$(-2,1,3)$$

$$\int_{(10.2)}^{(6xy^3 + 2z^2)} dx + (9x^2y^2) dy + (4xz+1) dz$$