Math 2511: Calc III - Practice Exam 3

1. State the meaning or definitions of the following terms:

a) vector field, conservative vector field, potential function of a vector field, volume, length of a curve, work,
b) curl and divergence of a vector field F, gradient of a function
c) 
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 where F is a two or three dimensional vector field
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g) What does it mean when a “line integral is independent of the path”?

h) State the Fundamental Theorem of Line Integrals

i) Please state Green’s Theorem. Make sure to know when it applies, and in what situation it helps

2. Below are four algebraic vector fields and four sketches of vector fields. Match them.

[A][image: image10.png]


[B][image: image11.png]RN RN RSN
RN N R RN
AR A RN NESEENNNNN
Y AR SRS ENNNNN




[C][image: image12.png]B AR A A AR A




[D][image: image13.png]N
W 2
SIS e e




(1) 
[image: image14.wmf]>

=<

y

x

y

x

F

,

)

,

(

, (2) 
[image: image15.wmf]>

-

=<

x

y

y

x

F

,

)

,

(

, (3) 
[image: image16.wmf]>

=<

1

,

)

,

(

x

y

x

F

, (4) 
[image: image17.wmf]>

=<

y

y

x

F

,

1

)

,

(


b) Below are two vector fields. Which one is clearly not conservative, and why?
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c)
Say in the vector field [C] above you integrate over a straight line from (0,-1) to (-1,0). Is the integral positive, negative, or zero?

3. Are the following statements true or false:

a) If the divergence of a vector is zero, the vector field is conservative.

b) If 
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 is a conservative vector field then 
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c) If a line integral is independent of the path, then 
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 for every path C

d) If a line integral is independent of the path, then 
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 for every closed path C

e) If a vector field is conservative in a disk then 
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f) 
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 denotes the surface area of the region R

g) 
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h) Can you apply the Fundamental Theorem of line integrals for the function 
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i) Can you apply the Fundamental Theorem of line integrals for the vector field 
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j) Can you apply Green’s theorem for a curve C, which is a straight line from (0,0,0) to (1,2,3)?

4. Suppose that 
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 is some vector field.

a) Find div(F)

b) Find curl(F)

c) Find curl(curl(F))

d) Find div(curl(F))
e) grad., div., and curl of the vector field if appropriate for 
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f) grad., div., and curl of the vector field if appropriate  for 
[image: image31.wmf]>

-

+

<

xyz

y

x

x

x

y

y

),

sin(

)

sin(

),

cos(

)

cos(


g) grad., div., and curl of the vector field if appropriate for 
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5. Decide which of the following vector fields are conservative. If a vector is conservative, find its potential function

a) 
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c) 
[image: image35.wmf]>

-

=<

1

,

cos

),

sin(

)

,

,

(

y

x

y

z

y

x

F


d) 
[image: image36.wmf]>

+

=<

zy

z

x

xy

z

y

x

F

2

,

,

2

)

,

,

(

2

2
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g) 
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h) 
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6. Evaluate the following integrals:

a) 
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 where R is the triangular region bounded by y = 0, y = x, and x = 1
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e) 
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 where S is the first-octant portion of the cylinder 
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g) Find the flux of the vector field 
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7. For the following line integrals there is a short-cut you can use to simplify your computations (but justify your shortcut by quoting the appropriate theorem)
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b) 
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 where C is some smooth curve from (0,0,0) to (1,4,3)
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 and C is the upper half of the unit circle, from (1,0) to (-1,0).
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 where C is the path from (0,0) to (1,1) along the graph of 
[image: image69.wmf]3

x

y

=

 and from (1,1) to (0,0) along the graph of 
[image: image70.wmf]x

y

=

.

8. Green’s Theorem

a) Use Green’s theorem to find 
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 and C is the circle with radius 3, oriented counter-clockwise (You may need the double-angle formula for cos somewhere during your computations)

b) Evaluate 
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9. Evaluate the following integrals. You can use any theorem that’s appropriate:

c) 
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10. Prove the following:

a) If 
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b) A function (not a vector field) 
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c) Use Green’s Theorem to prove that integrals of a conservative vector fields over closed curves are zero (assuming that the closed curve encloses a simply connected region and all conditions of Green’s theorem are satisfied).
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