Math 2411 - Calc III Practice Exam 2

This is a practice exam. The actual exam consists of questions of the type found in this practice exam, but will be shorter. If you have questions do not hesitate to send me email. Answers will be posted if possible - no guarantee.

1. Definitions: Please state in your own words the following definitions:
a) Limit of a function $z=f(x, y)$
b) Continuity of a function $z=f(x, y)$
c) partial derivative of a function $\mathrm{f}(\mathrm{x}, \mathrm{y})$
d) gradient and its properties
e) directional derivative of a function $f(x, y)$ in the direction of a unit vector u
f) The (definition and geometric meaning of) the double integral of f over the region $R \iint_{\boldsymbol{R}} f(x, y) d A$
g) Surface area
2. Theorems: Describe, in your own words, the following:
a) a theorem relating differentiability with continuity
b) the procedure to find relative extrema of a function $f(x, y)$
c) the procedure to find absolute extrema of a function $f(x, y)$
d) how to switch a double integral to polar coordinates
e) a theorem that allows you to evaluate a double integral easily
3. True/False questions:
a) If $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$ then $\lim \underset{x \rightarrow 0}{f(x, 0)}=0$ True. It general hint ersh, the wove specific one eloes, 100 .
b) If $\lim f(0, y)=0$ then $\lim f(x, y)=0$

$$
y \rightarrow 0 \quad(x, y) \rightarrow(0,0)
$$

c) $\quad \lim _{h \rightarrow 0} \frac{f(x+a h, y+b h)-f(x, y)}{h}=\frac{\partial}{\partial x} f(x, y) \quad$ Fabre \sum clefuriction of $D_{\vec{u}}(P)$
d) If f is continuous at $(0,0)$, and $\mathrm{f}(0,0)=10$, then $\underset{(x, y) \rightarrow(0,0)}{\lim f(x, y)=10}$ Tree by Gre very definition
e) If $f(x, y)$ is continuous, it must be differentiable

$$
\text { Fulas eq. } f(x y)|=|x|
$$

f) If $f(x, y)$ is differentiable, it must be continuous True by theorem
g) If $f(x, y)$ is a function such that all second order partials exist and are continuous then $f_{x x}=f_{y y}$ Feller $f_{x y}=f_{y x} \ln A$
h) The volume under $\mathrm{f}(\mathrm{x}, \mathrm{y})$, where $a \leq x \leq b$ and $g(x) \leq y \leq h(x)$ is $\int_{a}^{b(g(y)} \int_{g(x)} f(x, y) d y d y$ fabre not $f_{x x}$ and fry
i) If $f(x, y)$ is continuous then $\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y$

True - Tubini's thun
j) If $f(x, y)$ is continuous then $\int_{a}^{b} \int_{c}^{d} f(x) g(y) d y d x=\left(\int_{a}^{b} f(x) d x\right) \cdot\left(\int_{c}^{d} g(y) d y\right)$ True. If f only depends on x
k) If f is continuous over a region D then $\iint_{D} f(x, y) d x d y=\iint_{D} f(r, \theta) \theta d \theta d r$ Fabre $r d r d \theta$
4. Surfaces: Find the domain for the following functions
a) $f(x, y)=\frac{1}{x y}$

$$
x y \neq 0 \Rightarrow \text { domain }: \mathbb{R}^{2}-\{x=0 \text { or } y=0\}
$$

b) $\quad \begin{array}{ll}f(x, y)=\frac{1}{x^{2}+y^{2}} \quad & x^{2}+y^{2}=0 \\ & \Rightarrow x=y=0\end{array} \quad \Rightarrow$ dourain: $Q^{2}-\{(0,0)\}$

5. Limits and Continuity: Determine the following limits as $(x, y)->(0,0)$, if they exist.
a)

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y+1}{x^{2}+y^{2}+1}=1 / 1=1
$$

b) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y+1}{x^{2}+y^{2}}=1 / 0 \quad$ undeficied
c) $\quad \lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}: \quad x=0: \lim _{y \rightarrow 0} \frac{0}{y^{2}}=0$ l.n.e. $\quad x=y=\lim _{x \rightarrow 0} \frac{x^{2}}{2 x^{2}}=1 / 2$
$\$$ chiltment so clue
d) $\quad \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{2}+y^{2}}$

Thus Given 220 pish $\delta \neq \varepsilon$. Then if

$$
\begin{aligned}
& \|(x, y)\|<\delta \Rightarrow \sqrt{x^{2}+y^{2}}<\delta=\varepsilon \\
& \Rightarrow\left|\frac{x^{2} y}{x^{2}+y^{2}}\right|<\sqrt{x^{2}+y^{2}}<\varepsilon \\
& \Rightarrow|f(x, y)|<\varepsilon \quad \Rightarrow \lim _{(x, y) \rightarrow(0,0)} f(x, y)=0
\end{aligned}
$$

Noble: $\frac{x^{2}}{x^{2}+y^{2}}<1 \Rightarrow\left|\frac{x^{2} y}{x^{2}+y^{2}}\right|<|y|<\sqrt{x^{2}+y^{2}}$

$$
\text { e) } \begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}} & x=0: \lim _{y \rightarrow 0} \frac{-y^{2}}{y^{2}}=-1 \\
\int_{\text {dine. }} & y=0 \cdot \lim _{x \rightarrow 0} \frac{x^{3}}{x^{2}}=1
\end{aligned}
$$

6. Picture: Match the following contour plots (level plots) to their corresponding surfaces.
d)

e)
$[3]=$ A

f)
[A] $=(3)$

[B] (4)

g)
$[\mathrm{C}]=$ (1)
[D] (2)

Other picture problems:

- Given a contour plot, draw the gradient vector at specific points
- classify some regions as type-1, type-2, or neither.

7. Differentiation: Find the indicated derivatives for the given function:
a) Find
b) Suppose $f(x, y)=2 x^{3} y^{2}+2 y+4 x$, find

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{x}}=6 x^{2} y^{2} t 4 \\
& \mathrm{f}_{\mathrm{y}}=4 x^{3} y+2 \\
& \mathrm{f}_{\mathrm{xx}}=12 x y^{2}
\end{aligned}
$$

$$
\begin{aligned}
& f_{x y}=12 x^{2} y \\
& f_{y y}=4 x^{3}
\end{aligned}
$$

moth
c) Find the rate of change with respect to y of $x^{2}+y^{2}+z^{2}=1$ at $P(2 / 3,1 / 3,2 / 3)$.
d) Let $f(x, y)=y^{2} e^{x}+y$. Find

$$
\begin{aligned}
& f_{z}=y^{2} e^{x}, f_{z x}=y^{2} e^{x}, f_{y}=2 y e^{x} t \mid, f_{y y}=2 e^{x}, f_{x y}=f_{y x}=2 y e^{x} \\
& f_{x y y}=\left(f_{x y} l_{y}=2 e^{x}\right. \\
& \in \text { beculure }\left(f_{x y} \mid=\left(f_{y z}\right) \Rightarrow\left(\left.f_{x y}\right|_{y y}=\left(f_{y x}\right)_{y:}!_{1}\right.\right. \\
& f_{y x y}=\left(f_{y x} l_{y}=2 e^{x}\right.
\end{aligned}
$$

$f_{y y x}=2 e^{x}\{$ matches by erin ciclence
8. Directional Derivatives:
a) Find the directional derivative of $f(x, y)=x y e^{x y}$ at $(-2,0)$ in the direction of a vector u, where u makes an angle of $\mathrm{Pi} / 4$ with the x -axis.

$$
f_{x}=y e^{x y}+x y, y e^{x y}=y e^{x y}+x y^{2} e^{x y} \Rightarrow \text { at }(-2,0): f_{x}=0
$$

$$
f_{y}=x e^{2 y}+x y x e^{x 4}=x e^{x y}+x^{2} y e^{x y} \Rightarrow \text { at }(-40): f_{y}=-2
$$

$$
\begin{aligned}
& u=\left(\cos \left(\left.\pi 4\right|_{1} \sin (\sqrt{4})\right)=(1 / \sqrt{2}, 1 / \sqrt{6})\right. \\
& \Rightarrow D_{6}(\omega)=\langle 0,-2) \cdot(1 / \sqrt{2}, 1 / 2)= \\
&=-\sqrt{2}
\end{aligned}
$$

b) Find $D_{u}(f)$ where $f(x, y)=\frac{x}{y}-\frac{y}{x}$ and $\vec{u}=\left\langle-\frac{4}{5}, \frac{3}{5}\right\rangle$

$$
\begin{aligned}
& f_{x}=\frac{1}{y}+\frac{y}{x^{2}} \\
& f_{y}=-\frac{x}{y^{2}}-\frac{1}{x}
\end{aligned} \quad \Rightarrow D \vec{a}(f)=\left\langle\frac{1}{y}+\frac{y}{\dot{x}^{2}} 1-\frac{x}{y^{2}}-\frac{1}{x}\right) \cdot\left(-\frac{4}{8}, \frac{3}{\}}\right)=\underline{-\frac{4}{r}\left(\frac{1}{y}+\frac{y}{x^{2}}\right)-\frac{3}{r}\left(\frac{x}{y^{2}}+\frac{1}{8}\right)}
$$

c) Suppose $f(x, y)=x^{2} e^{y}$. Find the maximum value of the directional derivative at $(-2,0)$ and compute a unit vector in that direction.
max dis. deriv. is $H \nabla \mathrm{Fl}$

$$
\begin{aligned}
& f_{x}=2 x e^{y} \\
& f_{y}=x^{2} e^{y}
\end{aligned} \quad \text { at }(-2,0): \begin{aligned}
& f_{y}=-4 \\
& f_{y}=4
\end{aligned} \quad \Rightarrow \quad\|\nabla f\|=\left\|\sqrt{(-4)^{2}+(4)^{2}}\right\|=\sqrt{38}
$$

10. Max/Min Problems: Compute the extrema as indicated
a) $\quad f(x, y)=3 x^{2}-2 x y+y^{2}-8 y$. Find relative extreme and saddle points), if any.

$$
\begin{aligned}
& f_{x}=6 x-2 y \quad=\frac{20}{4 x-8=0} \\
& f_{y}=\frac{-2 x+2 y-1=0}{4} \quad \Rightarrow x=2, y=6 \quad \text { is critical point. } \\
& f_{l}=\left(\begin{array}{ll}
6 & -2 \\
-2 & 2
\end{array}\right), D=12-4=8 \quad
\end{aligned}
$$

b) $\quad f(x, y)=4 x y-x^{4}-y^{4}$. Find relative extrema and saddle points), if any

$$
\begin{aligned}
& f_{x}=4 y-4 x^{3}=0 \Rightarrow y=x^{3} \quad x=0 \Rightarrow y=0 \quad 3 \text { critical moving } \\
& f_{y}=4 x-4 y^{3}=0 \Rightarrow x-x^{4}=0 \\
& x\left(1-x^{3}\right)=0 \Rightarrow x_{2} 0_{2} 1,-1 \\
& \begin{array}{ll}
x=0 \Rightarrow y=0 & 3 \text { critical moving } \\
x=1 \Rightarrow y=1 & (0,)_{1}(l, 1)_{1}(-1,-1)
\end{array} \\
& x=-1 \Rightarrow y=-1 \\
& \text { at }\left(O_{0}\right)=D<0 \Rightarrow \text { saddle print at }\left(\theta_{2}\right) \\
& \text { at (lull, } 0,0, f_{x y}<0 \Rightarrow \text { mads at (lc) } \\
& \text { at }(-1,1): 0,0, f_{x s} \subset 0 \Rightarrow \text { max at }\left(-l_{1}-1\right)
\end{aligned}
$$

c) Let $f(x, y)=\mathbf{3 x y}-\mathbf{6 x}-\mathbf{3 y + 7}$. Find absolute maximum and minimum inside the triangular region spanned by the points $(0,0),(3,0)$, and $(0,5) . f_{x}=\xi_{g}-6=0, f_{q}=\eta_{x}-\eta_{2} 0 \Rightarrow(l, 2)$ critical

$$
\begin{aligned}
x=0: f(\text { ry }) & =-3 y+7 \text { wo wit. } \\
y=0 \quad(f(x y) & =-6 x+7 \text { wo wit. } \\
y=r-\frac{5}{3} x: f(x) & =-8 x^{2}+14 x-8 \\
\left.c^{\prime} / v\right) & =-10 x+14<0 \\
x & =7 / r 1 y=8 / 3
\end{aligned}
$$

$\ngtr \propto$ Let $f(x, y)=3 x^{2}-2 x y+y^{2}-8 y$. Find the absolute extrema over [0, 1] $\times[0,2]$

$$
\text { critical in }[2,6 t \text { - not in }[0,1] \times[0,2]
$$

$$
x=0: f(y)=y^{2}-9 y \quad \rightarrow f(=2 y-8 \rightarrow y-4
$$

$$
x=1, \quad 3-2 y+y^{2}-8 y=y^{2}-10 y+3 \rightarrow y-5
$$

$$
x=2, \quad 3 x^{2} \rightarrow x=0
$$

11. Evaluate the following integrals:
a) $\int_{0}^{1} \int_{0}^{2} x y^{2} d x d y=\left.\int_{0}^{1} \frac{1}{2} x^{2} y^{2}\right|_{x=0} ^{2} d y=\int_{0}^{1} 2 y^{2} d y=\left.\frac{2}{3} y^{2}\right|_{0} ^{1}=\frac{2}{3}$
b) $\int_{0}^{\pi \pi / 2} \sin (x) \cos (y) d y d x=\left.\int_{0}^{\pi} \sin (y) \sin (x)\right|_{y=0} ^{y=\pi / 2} d x=\int_{0}^{\pi} \sin (x) d x=-\left.\cos (x)\right|_{0} ^{\pi}=-\cos (\pi)+\cos (0)=$
$=2$
c) $\int_{0}^{2} \int_{x^{2}}^{x}\left(x^{2}+2 y\right) d y d x=\int_{0}^{2} y x^{2}+y^{2} \int_{y=x^{8}}^{y=x} d x=\int_{0}^{1}\left(x-x^{2}\right) x^{2}+x^{2}-x^{4} d x^{2}$ $=\int_{0}^{2} x^{3}-x^{4}+x^{2}-x^{4} d x=\frac{1}{4}(2)^{4}-\frac{2}{5}(2)^{5}+\frac{1}{3}\left(2^{3}\right)=$
$=4-64 / 5+\frac{1}{3}=-\frac{92 / \sigma}{=}$
d) $\int_{-3}^{3 \sqrt{9-x^{2}}} \int_{0}^{x^{2}+y^{2}} d y d x$

$$
\begin{aligned}
& =\quad \int_{0}^{x=r \cos \theta} \\
& \begin{array}{l}
y=r \sin \theta \\
d y d r=r d r d \theta
\end{array} \quad \int_{0}^{\pi} \sqrt{r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta} r d r d \theta= \\
& \int_{0}^{\pi} \int_{0}^{3} r^{2} d r d \theta=\left.\frac{1}{3} r^{3}\right|_{0} ^{3}-\pi=q_{\sigma}
\end{aligned}
$$

$$
\text { e) } \begin{aligned}
\int_{0}^{a} \int_{0}^{b} \int_{0}^{c} x^{2}+y^{2}+z^{2} d x d y d z & =\int_{0}^{a} \int_{0}^{s} \frac{1}{3} x^{3}+x y^{2}+\left.x z^{2}\right|_{x=0} ^{c} d y d z=\int_{d}^{a} \int_{0}^{b} \frac{1}{3} c^{3}+c y^{2}+c z^{2} d y d z= \\
& =\int_{0}^{a} \frac{1}{3} c^{3} y+c \frac{1}{3} y^{3}+c y z^{3} \int_{y=0}^{y=s} d x=\int_{0}^{a} \frac{1}{j} c^{3} S+c \frac{1}{3} s^{3}+c b^{3} d z z \\
& =\frac{1}{3} a S c^{3}+\frac{1}{3} a c s^{3}+\frac{1}{3} s c a^{3}
\end{aligned}
$$

f) $\int_{0}^{\sqrt{\sqrt{\pi}} \pi} \int_{y}^{\sqrt{x}} \cos \left(x^{2}\right) d x d y$

g) $\iint_{\boldsymbol{R}} \sqrt{x^{2}+y^{2}} d A$, where R is the part of the circle in the $1^{\text {st }}$ quadrant

$$
\begin{gathered}
\iint_{2} \sqrt{x^{2}+y^{2}} d A=\int_{0}^{\pi / 2} \int_{0}^{1} r \cdot r d \sigma d \theta \text { in paler coords. } \\
=1 / 3 \cdot \pi / 2=\underline{\sigma} / 6
\end{gathered}
$$

12. The pictures below show to different ways that a region R in the plane can be covered. Which picture corresponds to the integral $\iint_{R} f(x, y) d x d y \quad f \times y$ them x

thin is $\iint f d y d x$
13. Suppose you want to evaluate $\iint_{\boldsymbol{R}} f(x, y) d A$ where R is the region in the wy plane bounded by $\boldsymbol{y}=\mathbf{0}, \boldsymbol{y}=\mathbf{2 - \boldsymbol { x } ^ { 2 }}$, and $\boldsymbol{y}=\boldsymbol{x}$. According to Fubini's theorem you could use either the iterated integral $\iint f(x, y) d x d y$ or $\iint f(x, y) d y d x$ to evaluate the double integral. Which version do you prefer? Explain. You do not need to actually work out the integrals.

$\iint f d x d y$ coould cerult in L intervals
$\iint 4 d y d x$ is one iwlequal therefore simpler
14. Use a multiple integral and a convenient coordinate system to find the volume of the solid:
a) bounded by $z=x^{2}-y+4, z=0, y=0, x=0$, and $x=4$

$$
y=x^{2}+4 \quad V=\int_{0}^{4} \int_{0}^{x^{2}+4} x^{2}-y+4 d y d x=\quad \text { Maple }
$$

b) bounded by $z=e^{-x^{2}}$ and the planes $y=0, y=x$, and $x=1$

$$
V_{2} \int_{0}^{1} \int_{0}^{x} e^{x^{2}} d y d x=e^{\text {Maple }} \frac{1}{2}(e-1)
$$

c) bounded above by $z=\sqrt{16-x^{2}-y^{2}}$ and bounded below by the circle $x^{2}+y^{2} \leq 4$
d) evaluate $\iint_{\boldsymbol{R}} \frac{y}{x^{2}+y^{2}}$ where R is a triangle bounded by $y=x, y=2 x, x=2$

$$
\begin{aligned}
& \int_{0}^{1} \int_{x}^{e x} \frac{y}{x^{2}+y^{2}} d y d x=\int_{0}^{1} \frac{1}{2} \ln \left(x^{2}+y^{2}\right) \int_{y=x}^{y=2 x} d x=\int_{0}^{1} \frac{1}{2} \ln \left(8 x^{2}\right)-\frac{1}{2} \ln \left(2 x^{2}\right) d x \\
& =\frac{1}{2} \int_{0}^{1} \ln (\tau)+2 \ln (x)-\ln (2)-2 \ln (x) d x=\frac{1}{2} \int_{0}^{1} \ln (\tau)-\ln (2) d x^{2} \\
& =\frac{1}{2}(\ln (T)-\ln (2))
\end{aligned}
$$

e) bounded by the paraboloid $z=4-x^{2}-2 y^{2}$ and the wy plane
15. Find the following surface areas:
a) of the plane $z=2-x-y$ above the rectangle $0 \leq x \leq 2$ and $0 \leq y \leq 3$

$$
\begin{aligned}
& f_{x}=-1, f_{y}=-1 \Rightarrow \sqrt{f_{x}^{2}+f_{y}{ }^{2}+1}=\sqrt{8} \\
& \Rightarrow \text { arrear }=\int_{0}^{2} \int_{0}^{3} \sqrt{3} d y d x=6 \sqrt{3}
\end{aligned}
$$

b) of the cylinder $z=9-\boldsymbol{y}^{\mathbf{2}}$ above the triangle bounded by $\boldsymbol{y}=\boldsymbol{x}, \boldsymbol{y}=-\boldsymbol{x}$, and $y=3$

$$
f_{x}=0 \quad f_{y}=-2 y \Rightarrow \sqrt{f_{x}^{2}+f_{y}^{2}+1}=\sqrt{4 y^{2}+1}
$$

$$
\begin{aligned}
\int_{0}^{3} \int_{-y}^{y} \sqrt{4 y^{2}+1} d x d y & =\left.\int_{0}^{3} x \sqrt{4 y^{2}+1}\right|_{x=-3} ^{x=y} d y=2 \int_{0}^{3} y \sqrt{4 y^{2}+1} d y= \\
& =\left.2 \frac{2}{3} \cdot \frac{1}{8}\left(4 y^{2}+1\right)^{3 / 2}\right|_{0} ^{3}=\frac{37}{6} \sqrt{37}-1 / 6
\end{aligned}
$$

c) of the surface $z=16-x^{2}-y^{2}$ above the circle $x^{2}+y^{2} \leq 9$ dshraleds 3

$$
f_{x^{2}}-2 x, f_{y}=-2 y \Rightarrow \sqrt{f_{y}^{2}+f_{y}^{2}+1}=\sqrt{4 x^{2}+y^{2}+1}
$$

16. Prove the following facts:
a) Use the definition to find f_{x} for $f(x, y)=x y$ of course I hew $f_{x}=y$. Need to prove it:

$$
f_{x}=\lim _{h \rightarrow 0} \frac{f(x+h, q)-f(x-y)}{n}=\lim _{h \rightarrow 0} \frac{\left(x+h_{1}\right) y-x y}{n}=\lim _{h \rightarrow 0} \frac{y(x+h-x)}{h}=\lim _{h \rightarrow 0} y \frac{y}{h}=\lim _{h \rightarrow 0} y=y
$$

b) Use the definition to find f_{x} for $f(x, y)=x y$
sore poclom
c) A function f is said to satisfy the Laplace equation if $\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=\mathbf{0}$. Show that the function $f(x, y)=\ln \left(x^{2}+y^{2}\right)$ satisfies the Laplace equation.

$$
\begin{aligned}
& f_{x}=\frac{2 x}{x^{2}+y^{2}}, f_{x y}=\frac{2\left(x^{2}+y^{2}\right)-2 x(2 x)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{2 y^{2}-2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& f_{y y}=\frac{2 x^{2}-2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \Rightarrow f_{x y}+f_{y y}=\frac{2 y^{2}-2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}+\frac{2 x^{2}-2 y^{2}}{\left(x^{2}-y^{2}\right)^{2}}=0 \text { so hue }
\end{aligned}
$$

d) Two function $u(x, y)$ and $v(x, y)$ are said to satisfy the Cauchy-Riemann equations if $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$. Show that the functions $u(x, y)=e^{x} \cos (y)$ and $v(x, y)=e^{x} \sin (y)$ satisfy the Cauchy-Riemann equations.

$$
\begin{array}{lll}
u_{x}=e^{x} \cos (y) & u_{y}=-e^{x} \sin (y) \\
v_{x}=e^{x} \sin (y) & u_{y}=e^{x} \cos (y) & u_{x}=v_{y} \text { and }
\end{array}
$$

e) Let $f(x, y)=\left\{\begin{array}{ll}\frac{x y}{x^{2}+y^{2}}, & f(r f(x, y) \neq(0,0) \\ 0, & \text { rot }(x, y)=(0,0)\end{array}\right.$ Then show that f has partial derivatives at $(0,0)$ but f is not
differentiable at $(0,0)$-hard!

Mot applicable
f) Prove that the volume of a sphere with radius R is $4 / 3 * P i * X$ Sphere. $x^{2}+y^{2}+z^{2}=R^{2} \Rightarrow z= \pm \sqrt{R^{2}-x^{2}-y^{2}}$

$$
\begin{aligned}
V 2 & \int_{-R}^{R} \int_{-\sqrt{R^{2}-x^{2}}}^{\sqrt{R^{2}-x^{2}}} \sqrt{R^{2}-x^{2}-y^{2}} d y d x
\end{aligned}=2 \cdot \int_{0}^{2 \pi} \int_{0}^{R} \sqrt{R^{2}-\beta^{R}} r d r d \theta=2 \int_{0}^{2}-\frac{1}{3} \frac{1}{2}\left(R^{2}-r^{2}\right)^{3 / 2} \int_{r=0}^{r=R} d \theta
$$

g) Prove that the surface area of a sphere with radius R is $4 * \mathrm{Pi} * \not A^{2} R^{2}$

$$
\begin{aligned}
& z=\sqrt{R^{2}-x^{2}-y^{2}} \Rightarrow f_{\gamma}=\frac{-x}{\sqrt{R^{2}-x^{2}-y^{2}}} \quad \& f_{y}=\frac{-y}{\sqrt{R^{2}-x^{2}-y^{2}}} \\
& \Rightarrow f_{x}{ }^{2}+f_{y}^{2}+1=\frac{x^{2}}{R^{2}-x^{2}-y^{2}}+\frac{y^{2}}{R^{2}-x^{2}-y^{2}}+1=\frac{x^{2}+y^{2}+R^{2}-x^{2}-y^{2}}{R^{2}-x^{2}-y^{2}}=\frac{R^{2}}{R^{2}-x^{2}-y^{2}} \\
& \Rightarrow \text { areas } 2 \iint_{\text {Din }} \sqrt{\frac{R^{2}}{R^{2}-x^{2}-y^{2}}} d A=2 \int_{0}^{2 \pi} \int_{0}^{R} \frac{R}{\sqrt{R^{3}-r^{2}}} r d \theta d \theta= \\
& =2 R \int_{0}^{2 \pi} \int_{0}^{R} \frac{r}{\sqrt{R_{0}^{2}-r^{6}}} d r d \theta=2 R \int_{0}^{2 \pi}-\left(R^{2}-r^{2}\right)^{1 / 2} \int_{0}^{R} d \theta= \\
& =-2 R \int_{0}^{2 \pi}-\left(R^{2}\right)^{1 / 2} d \theta=-2 R \cdot R \cdot 2 \pi=4 \pi R^{2}
\end{aligned}
$$

\square

