Calc 3 - Maple 1

In class we discussed several Maple commands to visualize functions of two variables, sheets, implicitly defined functions, and vector-valued functions:

with(plots)	Loads additional plot commands
$\begin{aligned} & \hline \text { plot } 3 \mathrm{~d}(\mathbf{f}(\mathbf{x}, \mathbf{y}), \quad \mathbf{x}=\mathbf{A} . \mathbf{B}, \quad \mathbf{y}=\mathbf{C} . \mathbf{D}) \\ & \operatorname{plot} 3 d(\sin (x) \cdot \cos (y), x=-4 \ldots 4, y=-4 . .4) \\ & \hline \end{aligned}$	Draws a surface in 3D
$\begin{aligned} & \left.\begin{array}{l} \text { implicitplot3d }(\mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z})=\mathbf{c}, \quad \mathbf{x}=\mathbf{A} . . \mathbf{B}, \quad \mathbf{y}=\mathbf{C} . . \mathbf{D}, \quad \mathbf{z = E} . . \mathbf{F}) \\ \text { implicitplot } 3 d \\ d \end{array} x^{2}+y^{2}+z^{2}=1, x=-1 \ldots 1, y=-1 \ldots 1, z=-1 . .1\right) \end{aligned}$	Draws an implicitly defined function
$\begin{aligned} & \operatorname{plot}([\mathbf{x}(\mathbf{t}), \quad \mathbf{y}(\mathbf{t}), \quad \mathbf{t}=\mathbf{A} . . \mathrm{B}], \quad \mathbf{x}=\mathbf{C} . . \mathbf{D}, \quad \mathbf{y}=\mathbf{E} . . \mathrm{F}) \\ & \operatorname{plot}([\sin (t), \cos (t), t=-4 . .4], x=-1 \ldots 1, y=-1 \ldots 1) \end{aligned}$	Draws a 2D space curve
spacecurve ([x(t),y(t),z(t)],t=A..B) spacecurve $([\cos (t), \sin (t), t], t=0 . .8 \cdot \mathrm{Pi}$, numpoints $=500)$	Draws a 3D space curve
$\begin{aligned} & \text { tubeplot }([\mathbf{x}(\mathrm{t}), \mathbf{y}(\mathrm{t}), \mathbf{z}(\mathrm{t})], \mathrm{t}=\mathrm{A} . . \mathrm{B}) \\ & \text { tubeplot }\left(\left[t, t^{2}, t^{3}\right], t=-1 . .1\right) \end{aligned}$	Draws a tube around a 3D space curve

Complete the following assignments in Maple. Save your Maple worksheet or copy-and-paste your graphs into a Word document. Submit the document as an email attachment to me.

1. Use the appropriate plot command to visualize the following functions:
a) $f(x, y)=x e^{-x^{2}-y^{2}}$
b) $x^{2}+z^{2}=4$
c) $r(t)=<\cos (t), \sin (2 t)>$
d) $x^{3}+y^{3}+z^{3}+1=(x+y+z+1)^{3}$
e) $r(t)=<2 \cos (5 t), 5 \sin (7 t)>$
f) $f(x, y)=\sin (x y)$
g) $r(t)=<-10 \cos (t)-2 \cos (5 t)+15 \sin (2 t),-15 \cos (2 t)+10 \sin (t)-2 \sin (5 t), 10 \cos (3 t)>$
h) $\sin (x) \cdot \cos (y) \cdot z=0.5$
i) $r(t)=<\cos (t), \sin (t), \cos (t) \cdot \sin (t)>$

Right-click on your plot to add axes to your picture and rotate it so that the primary features of the graph show up nicely.
2. As a late Valentine's Day special, draw the 2D space curve

$$
\left.r(t)=<\sin (t) \cdot \cos (t) \cdot \ln (|t|),|t|^{0.3} \cdot(\cos (t))^{\frac{1}{2}}\right\rangle
$$

as t goes from -1 to 1 .

Bonus: To see what else Maple can do, execute the following command. Do you know the name of the object?

$$
\begin{gathered}
\text { plot } 3 d\left(\left[4+x \cos \left(\frac{1 y}{2}\right), y, x \sin \left(\frac{1 y}{2}\right)\right], x--\pi, \ldots \pi, y-0 \ldots 2 \pi,\right. \\
\text { cooras }=\text { cylindricat.style }- \text { patchnogrid } . \text { grial }=[60,60] . \\
\text { orientation }-[35,135], \text { tightmodel }- \text { Hghut, shading }- \text { shue, }, \\
\text { scating }=\text { constrained, transparency }=0.3)
\end{gathered}
$$

