Math 1411

Worksheet 9

Find the Taylor series for the following functions, complete with radius of convergence, centered at the origin.

1. $e^{x^{2}}$
2. $x \sin (x)$
3. $x^{2} \cos \left(x^{3}\right)$
4. $e^{x} \sin (x)$ (first three terms only)
5. $\tan (x)$ (first three terms only)
6. $\int \cos \left(t^{2}\right) d t$
7. $\int e^{-x^{2}} d x$
8. $\int x e^{x^{2}} d x$

Solve the following differential equations:

1. $y^{\prime}=5 \sin (x), y(0)=5$
2. $y^{\prime}=\frac{2 x}{y}$
3. $y^{\prime}=2 y, y(0)=4$
4. $\frac{d y}{d x}=4-x$
5. $\frac{d y}{d x}=4-y$
6. $y \prime=\frac{\sqrt{(x)}}{3 y}$
7. $y^{\prime}=x(1+y)$

The rate of change of y is proportional to y. When $t=0, y=2$. When $t=2, y=4$. What is the value of y when $t=3$?
The number of bacteria in a certain culture increases from 600 to 1800 in 2 hours. Assuming that the exponential law of growth holds, find a formula for the number of bacteria in the culture at any time t. What is the number of bacteria at the end of 4 hours?
Radium decays exponentially and has a half-life of approximately 1600 years. That is, given any quantity, one-half of it will disintegrate in 1600 years. Find a formula for the amount $q(t)$ remaining from 50 mg of pure radium after t years. When will there be 20 mg left?

