Worksheet 4

1. State the definition of
(a) area between two functions f and g
(b) volume of a solid of revolution, using the methods of disks
(c) volume of a solid of revolution, using the methods of shells
(d) arc length of a curve represented by a function f
(e) surface of revolution of a solid rotated around the x axis
(f) work done by a force F from $x=a$ to $x=b$
(g) the center of mass of a planar lamina of uniform density ρ bound by the graphs of $f(x)$ and $g(x)$.
2. Find the area bounded by $y=\frac{1}{x^{2}}, y=0, x=1, x=5$.
3. Find the area bounded by $y=\sqrt{x-1}$, and $y=\frac{x-1}{2}$
4. Find the volume of the solid generated by revolving the plane region bounded by $y=\sqrt{x}, y=2$, and $x=0$ around (a) the x axis and (b) the y axis.
5. Consider the region bounded by $y=x \sqrt{x+1}$ and $y=0$ and find (a) the area of the region, (b) the volume of the solid generated by revolving it around the x axis, (c) volume of the solid generated by revolving it around the y axis, (d) the surface area of the solid generated by revolving it around the x axis (you don't need to evaluate this one)
6. Find the arc length of $f(x)=\frac{4}{5} x^{5 / 4}, x \in[0,4]$. Note: you might need to use Maple to evaluate the resulting integral
7. Find the surface area of the region bounded by the graphs of $y=\frac{1}{2} x^{2}, y=0$, and $x=3$ as it revolves around the x axis.
8. Find the work done in stretching a spring from its natural length of 10 inches to a length of 15 inches, if a force of 4 pounds is needed to stretch it 1 inch.
9. Find the center of mass for the lamina of uniform density ρ bounded by $y=\sqrt{x}$ and $y=x$.
10. Find the center of mass for the lamina of uniform density ρ bounded by $y=\sqrt{1-x^{2}}$ and $y=-\sqrt{1-x^{2}}$
