Math 1511 – Practice for Final Exam
Exam layout: The final exam has questions according to the following categories:

· Question 1: Definitions

· Question 2: True/False questions and/or Picture Problems

· Question 3: Area between curves

· Question 4: Volume of a rotational solid

· Question 5: Arc Length of a function y = f(x)

· Question 6: Evaluate integrals (multi-part, at most 5 parts, like:

a. simple subst 
b. int by parts

c. partial fraction decomposition
d. trig substitution

e. indefinite integral

· Question 7: limit (possibly multi-part, like one easy limit, one with l’Hospital, and one tricky one with l’Hopital

· Question 8: Series (multipart, 2 questions about convergence, one about power series)

· Question 9: Differential equation (multipart – 2 different types of DE)

· Question 10: Exp. Growth and decay ‘story’ problem

· Question 11: Parametric equations/polar equations

· Extra Credit Question: SOMETHING …

Sample Questions:
There are many sample questions below, many more than will be on the final. Make sure you can do at least one or two of every type of question.
1. Please state the definitions of the following terms

a) The area between two functions

b) Volume of a rotational solid, by disks

c) Volume of a rotational solid, by shells

d) Integration by Parts rule for two functions u(x) and v(x)
e) Partial Fraction Decomposition

f) Trigonometric Substitution (give 2 different examples)

g) Improper Integrals

h) Length of a curve f(x) between a and b

i) Arc Length of a curve

j) L’Hospital’s Rule

k) What is an “infinite sequence”

l) What is an “infinite series”

m) What is the N-th partial sum

n) The series 
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o) What is the Divergence Test?

p) What is “absolutely convergent”

q) What is a Power Series?

r) Differential equation

s) Differential equation with initial condition

t) Separable differential equation

u) First-order differential equation

v) Second-order homogeneous differential equation

w) Second-order non-homogeneous differential equation

Below are two pictures, indicating sketches of solids of revolution around x-axis. Each contains a red “slice” used to compute the solid’s volume. Match picture to integral by connecting them with a line.
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Decide which method to use by drawing lines from an integral to the corresponding method. You do NOT have to actually find the integral.
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	Simple Substitution Rule
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	Integration by Parts once



	
[image: image8.wmf]dx

x

x

ò

)

sin(


	Integration by Parts twice or more
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	Integration by Parts followed by solving for an integral




Find the area bounded by the curves 
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Find the volume of the solid generated by revolving the plane region bounded by 
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around the y-axis. Use any method you like.

Find the volume of the solid generated by revolving the plane region bounded by 
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Integrate using any method:
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Please find the following limits (you might find l’Hospital’s rule helpful for some limits)
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Find the arc length of the region bounded by the graph of 
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Determine whether each of the following series converge or diverge, or conditionally converges if applicable. Please state carefully which test you are using to support your conclusion. If possible, find the limit of the series

a) 
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Recall that 
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. Use that fact to determine the power series centered at the origin for:
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Find the Taylor series for the following functions, all to be centered at the origin.
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Suppose the indicated function has a power series around 0. Find the value of the specified term:
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The series 
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 clearly converges. What number does it converge to? What about the series 
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Which of the following functions are solutions to the indicated differential equations?

DE: 
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DE: 
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DE: 
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DE: 
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The half-life of radium-266 is 1590 years. A sample of radium-226 has a mass of 100 mg. Find a formula for the mass of radium-226 after 
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 years, using the law of radioactive decay.

a)
Find the mass of the sample after 1000 years to the nearest milligram

b)
When will the mass be reduced to 30 mg?

Solve the following separable DE’s
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Solve the following first order linear DE’s.
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Solve the following second order linear homogeneous DE’s
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Suppose a point is given in the indicated coordinate system. Convert the point to the specified other system:
Convert 
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Identify the following curves, given in polar coordinates.
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Sketch the following curves, given in polar coordinates
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