Exam 2 -Practice

1. Please state what the following terms mean:
a) Length of a curve, arc length
b) Moment about x or y axis
c) Center of Gravity
d) What is an "infinite sequence"
e) Increasing, decreasing, and bd sequences + related theorems
f) What is an "infinite series"
g) What is the N -th partial sum
h) The sequence $\left\{a_{n}\right\}$ converges to the limit L
i) The series $\sum_{n=0}^{\infty} a_{n}$ converges to the limit L
j) What is the Divergence Test?
k) What is the Limit Comparison Test, and how about the Ratio Test
1) What is a geometric series, a p-series
$\mathrm{m})$ What is the harmonic series?
n) What is a Power Series?
o) What is a Taylor Series? A McLaurin series?
2. Arc Length question: Find the length of the curve $y=1+6 x^{3 / 2}$ for $0<x<1$

$$
\begin{aligned}
& L=\int_{a}^{b} \sqrt{l+[f(x)]^{2}} d x f(x)=1+6 x^{3 / 2} \\
& \Rightarrow f^{\prime}|x|=6 \cdot \frac{7}{2} x^{1 / 2}=9 x^{1 / 2} \\
& \Rightarrow 1+\left[f^{\prime}|x|\right]^{2}=1+8 \mid x \\
& \Rightarrow L=\int_{0}^{1} \sqrt{1+81 x} d x=\int_{0}^{1}(1+81 x)^{1 / 2} d x=\left.\frac{1}{11} \frac{2}{3}(1+81 x)^{3 / 2}\right|_{0} ^{1}=\frac{2}{3} \cdot \frac{1}{81}\left[82^{3 / 2}-1\right]
\end{aligned}
$$

3. Find the center of mass of the lamina of uniform density ρ bounded by the graph of $y=x^{2}-4$ and $y=0$. You might need the following formulas:

$$
\begin{aligned}
& M_{x}=\frac{\rho}{2} \int[f(x)]^{2} d x \quad M_{y}=\rho \int x \cdot f(x) d x \quad m=\rho \int_{a}^{b}|f(x)| d x \quad(\bar{x}, \bar{y})=\left(\frac{M_{y}}{m}, \frac{M_{x}}{m}\right) \\
& \left.m=\int_{-2}^{2} x^{2}-4 d x=\frac{1}{3} x^{3}-\left.4 x\right|_{-2} ^{2}=y-8-(-2\}+1\right)=\frac{16}{3}-16=-\frac{12}{3} \Rightarrow w=+\frac{32}{3} \\
& M_{y}=P \int_{-2}^{2} x\left(x^{2}-4\right) d x=0 \text { beccunse } x\left(x^{2}-4\right) \text { is wa model function } \\
& \begin{array}{r}
\left.M_{x}=\rho \frac{1}{2} \int_{-2}^{2}\left(x^{2}-4\right)^{2} d x=\frac{1}{2} \int_{-2}^{2} x^{4}-8 x^{2}+16 d x=\frac{1}{i}\left[\frac{1}{5} x^{5}-\frac{9}{3} x^{3}+16 x\right)_{-2}^{2}\right]= \\
\\
=\frac{1}{2} 2 \cdot\left(\frac{72}{5}-\frac{64}{3}+32\right)=\frac{0,6-720+490}{15}=\frac{286}{15}
\end{array}
\end{aligned}
$$

Thus, $(\bar{x}, \bar{y})=\left(0,-\frac{256}{16} \cdot \frac{1}{32}\right)=\left(0,-\frac{8}{5}\right)$
4. For the following sequences, please list the first 4 terms and determine what the limit of the sequence might be. If the sequence does not have a limit, please say so.

$$
\begin{aligned}
& \left\{(-1)^{n}\right\}_{n=1}^{\infty}=-1,1,-1,1,-1,1_{1} \ldots \text { diverges } \\
& \left\{\frac{1}{n}\right\}_{n=1}^{\infty}=\frac{1}{1}, \frac{1}{2}, \frac{1}{j}, \frac{1}{4} \ldots \text { converges lo Nero } \\
& \left\{1-\frac{(-1)^{n}}{n}\right\}_{n=1}^{\infty}=1+\left\lvert\,, 1-\frac{1}{2}\right., 1+11,1-\frac{1}{4}, 1+11, \ldots \text { converges to } 1 \pm 0=1 \\
& \left\{(-1)^{n}+\frac{4}{n}\right\}_{n=1}^{\infty}=-1+4,+1+2,-1+\frac{4}{3},+1+\frac{4}{4},-1+\frac{4}{5}, \ldots \sim \pm 1+0 \text { diverges } \\
& \left\{\frac{2^{n}}{n!}\right\}_{n=1}^{\infty}=\frac{2}{1}, \frac{4}{2}, \frac{8}{6}, \frac{16}{24}, \frac{12}{120}, \ldots \text { converges to Hero }
\end{aligned}
$$

$\{\cos (n)\}_{n=1}^{\infty}$ Jumps around without pallune as diverges
$\left\{\frac{n-3}{2 n^{2}+3 n-6}\right\}_{n=10}^{\infty} \sim \frac{n}{2 n^{2}} \rightarrow 0$ conveys to two
no necessary for \downarrow extent
For Review
$\left\{\left(1+\frac{1}{n}\right)^{n}\right\}_{n=1}^{\infty} \quad\left(1+\frac{1}{n}\right)^{n}$ converts 10 e: Eocuiclor $\ln \left(1+\frac{1}{n}\right)^{b}=n \ln \left(1+\frac{1}{n}\right)=\ln \left(\frac{1+1 / n}{1 / n}\right)$
$\ln (1+1 / n)=$
$1 / n$
By l'Huspital: $\lim \frac{\ln (H 1 / n)}{1 / n}=$ $\lim \frac{1}{1+\frac{1}{n}}=1 \Rightarrow \operatorname{lon} \operatorname{con}$ ar. 65^{1}
Memorise
$\left\{a_{n}\right\}_{n=1}^{\infty}$ where $a_{1}=1$ and $a_{n+1}=\sqrt{6+a_{n}}$ (tricky) original unis cuss.

$$
a_{1}=1, a_{2}=\sqrt{7}, a_{3}=\sqrt{6+\sqrt{7}}, a_{4}=\sqrt{6+\sqrt{6+\sqrt{7}}}
$$

Assume tare was a limit: $\lim a_{n}=L=\lim a_{n+1}=\lim \sqrt{G+a_{n}}=\sqrt{6+L}$

$$
\Rightarrow L=\sqrt{G+L} \Rightarrow L^{2}=6+L \Rightarrow C^{2}-L-G=0 \Rightarrow(L-3)(L+2)=0 \Rightarrow L=3
$$

It remain to prove lat these in a binit.
(1) $a_{n} \leq 3$ by induction.

$$
n=1: a_{1}=1<3
$$

Assume $a_{n} \leq 3$

$$
\begin{aligned}
& a_{n+1}=\sqrt{6+a_{n}} \leq \sqrt{6+3}=\sqrt{9}=3 \\
& \Rightarrow a_{n+1} \leqslant 3
\end{aligned}
$$

5. Questions about inc/dec/bdd sequences TBD
(2) a_{n} is inevening becuna
know $O \in a_{n} \leq 3$ from (1)

$$
\begin{aligned}
& \Rightarrow\left(a_{n}-3\right)\left(a_{n}+2 \mid \leq 0\right. \\
& \Rightarrow a_{n}{ }^{2}-a_{n}-6 \leq 0 \\
& \Rightarrow a_{n}{ }^{2} \leq 61 u_{n} \\
& \Rightarrow a_{n} \leq \sqrt{6+a_{n}} \\
& \Rightarrow a_{n} \leq a_{n+1} \Rightarrow a_{n} \text { in crewing }
\end{aligned}
$$

Now $\left\{a_{n}\right\}$ is increasing + bounded \Rightarrow wast couverof.
If it converge, the limit unit be 3 .
6. Determine whether each of the following series converge (absolutely) or diverge. Please state carefully which test you are using to support your conclusion. If possible, find the limit of the series $\sum_{n=1}^{\infty} \frac{n}{\ln (n)} \quad \lim \frac{n}{\ln (\omega)}=\infty \quad$ so semis clivergs by divergence lent!

$$
\sum_{n=1}^{\infty} \frac{n-1}{\underbrace{n^{3}+n+1}_{a_{n}}} \quad \text { Condor } \sum \underbrace{\frac{1}{n^{2}}}_{x_{n}}: \lim _{n-\infty} \frac{a_{n}}{5_{n}}=\lim _{n} \frac{n-1}{n^{3}+n+1} \cdot \frac{n^{1}}{1}=\lim \frac{(n-1) n^{2}}{n^{3}+n+1}=1
$$

thus buy limit comp. lest tho series counpuses lo $\sum 1 / \mathrm{m}^{2} \quad(p=2$-series so that both series counbrik.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} \cdot(n+1) \cdot 3^{n}}{n!}
$$

Radio Tent $\lim \left|\frac{u_{n+1}}{a_{n}}\right| \cdot \lim \left|\frac{(n+2) 3^{x+1}}{(n+1) y} \cdot \frac{x_{1}}{(n+1)\}^{x}}\right|=\lim _{n \rightarrow \infty} \frac{3(n+2)}{(n+1)^{2}}=0<1$ sens courcoras
$\sum_{n=5}^{\infty} \frac{3^{n}}{5^{n}}$ Geometric semis will $r^{3 / 5} \Rightarrow$ couveross. Can hind uclucal limit:

$$
\begin{aligned}
\sum_{4=5}^{\infty}\left(\frac{3}{5}\right)^{4} & =\left(\frac{3}{5}\right)^{5}+\left(\frac{3}{5}\right)^{6}+\left(\frac{3}{5}\right)^{7}+\ldots= \\
& =\left(\frac{3}{5}\right)^{5}\left[1+\left(\frac{3}{5}\right)+\left(\frac{3}{5}\right)^{2}+\left(\frac{3}{5}\right)^{3}+\ldots\right]= \\
& =\left(\frac{3}{5}\right)^{5} 1 / 1-7 / 5=\left(\frac{3}{5}\right)^{5} \cdot 1 / 2 / 5=\left(\frac{3}{5}\right)^{5} \cdot 5 / 2
\end{aligned}
$$

$\sum_{n=0}^{\infty} \frac{(-1)^{n} \cdot 2^{n}}{3^{n}} \quad$ Geomehic semis will $r_{z}-2 / 3$. Converges L_{0}

$$
\sum_{n=0}^{\infty}\left(-\frac{2}{3}\right)^{n}=1 / 1 / 2 / 3=1 / 53=3 / 5
$$

courrens by limit comer. will $E \frac{1}{a^{2}}$. But in also a bleseoping series: $\sum_{n=2}^{\infty} \frac{4}{n(n-1)}<\frac{4}{n(n-1)}=\frac{4}{n-1}-\frac{4}{n} \quad \log$ PF Decamp. Therefore

$$
\begin{aligned}
\sum_{n=2}^{\infty} \frac{4}{n \mid n-1)}=\sum_{n=2}^{\infty} \sum_{n-1}^{n}-\frac{4}{n} & =\left(\frac{4}{1}-\frac{4}{2}\right)+\left(\frac{y}{2}-\frac{4}{5}\right)+\left(\frac{4}{3}-\frac{4}{4}\right)+\left(\frac{4}{4}-\frac{4}{7}\right)+\ldots= \\
& =\underline{4}
\end{aligned}
$$

7. Find the radius of converges for the following power series

$$
\sum_{n=0}^{\infty}\left(\frac{x}{4}\right)^{n} \quad \text { ratio lest: } \lim \left|\frac{x^{n+1}}{4^{n+1}} \cdot \frac{4^{n}}{x^{n}}\right| \cdot \frac{1}{4}|x|<1 \Rightarrow|x|<4 \Rightarrow
$$

radius of converyunce in $R=4$

$$
\begin{aligned}
\sum(-1)^{n+1} \frac{x^{2 n+1}}{n \cdot 2^{2 n+1}} \lim _{n \rightarrow+\infty}\left|\frac{x^{2 n+1}}{(n+1) 2^{2 n+3}} \cdot \frac{n 2^{2 n+1}}{x^{2 n+1}}\right| & =\lim \left|\frac{x^{2} \cdot x^{2 n n} \cdot(n) \cdot 2^{n+1} \mid}{|n+1| 2^{2} \cdot x^{2 n+1} \cdot x^{n+1}}\right|= \\
& =\lim \frac{n}{n+1} \cdot \frac{1}{4}|x|^{2}=\frac{1}{4}|x|^{2}<1 \\
& \Rightarrow|x|^{2}<4 \Rightarrow|x|<2 \Rightarrow R=2 \Rightarrow
\end{aligned}
$$

$\sum_{n=1}^{\infty} \frac{n^{n} x^{n}}{n!}$

$$
\begin{aligned}
\lim \left|\begin{array}{l}
a_{n-1} \\
a_{n}
\end{array}\right|=\lim \left|\frac{(n+1)}{(n+1) x^{n+1}} \cdot \frac{x_{1}^{x}}{n^{4} x^{k}}\right| & =\lim \frac{(n+1)^{n} \cdot(n+1)}{(n+n) n^{n}}|x|= \\
& =\lim \left(\frac{n+1}{n}\right)^{n}|x|=\lim \left(1+\left.\frac{1}{n}\right|^{n} \cdot|x|=\right. \\
& =e|x| e|\Rightarrow| x \mid=1 / e \Rightarrow R=1 / e
\end{aligned}
$$

$$
\frac{1}{1-\dot{\Gamma}]}=\sum[]^{n}
$$

8. Recall that $\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\ldots+x^{n}+\ldots=\frac{1}{1-x}$ for $|x|<1$. Use that fact to determine the power series centered at the origin for:
a)

$$
f(x)=\frac{1}{1-4 x^{2}}=\frac{1}{1-\left(4 x^{2}\right)}=\sum_{n=0}^{\infty}\left(4 x^{2}\right)^{n}=\sum_{n=0}^{\infty} 4^{n} x^{2 n}
$$

b) $g(x)=-\ln (1-x):-\ln (1-x)=-\int \frac{1}{1-x} d x=-\int \sum_{n=0}^{\infty} x^{n} d x=-\sum_{n=0}^{\infty} \int x^{n} d x=$

$$
=-\sum_{n=0}^{\infty} \frac{1}{n+1} x^{n+1}
$$

c) $\quad h(x)=\frac{x^{5}}{1+x}$

$$
=\frac{x^{r}}{1-(-x)}=x^{r} \cdot \frac{1}{1-(-x)}=x^{r} \sum_{n=0}^{\infty}(-x)^{n}=x^{r} \sum_{n=0}^{\infty}(-1)^{n} x^{n}=
$$

$$
=\underbrace{\sum_{n=0}^{\infty}(-1)^{n} x^{n+5}}
$$

9. Find the Taylor series for the following functions, all to be centered at the origin.
a) $x^{3} e^{x^{2}} \quad e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \Rightarrow e^{x^{2}}=\sum_{n=0}^{\infty} \frac{\left(x^{2}\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{x^{2 n}}{n!}$

$$
\Rightarrow x^{7} e^{x^{2}}=x^{3} \sum_{n=0}^{\infty} \frac{x^{2 n}}{n!}=\sum_{n=0}^{\infty} \frac{x^{2 n+3}}{n!}
$$

b) $\quad \frac{\cos (x)-1}{x^{2}} \quad \cos (x)=1-\frac{x^{2}}{4!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(\ln) \mid}$

$$
\begin{aligned}
& \Rightarrow \cos (x)-1=-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots=\sum_{n=1}^{\infty}\left(-\left.1\right|^{n} \frac{x^{2 n}}{(2 n)!}\right. \\
& \frac{\cos (x)-1}{x^{2}}=x^{-2}(\cos (x)-1)=-\frac{1}{2!}+\frac{x^{2}}{4!}-\frac{x^{4}}{6!}+\ldots=\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{2 n-2}}{(2 n)!}
\end{aligned}
$$

c) $\int e^{-x^{2}} d x$

$$
e^{x}=1+x+\frac{x^{3}}{i l}+\frac{x^{7}}{j!}+\ldots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

$$
\begin{aligned}
\Rightarrow e^{-x^{2}}=1+\left(-x^{2}\right)+\frac{\left(-x^{2}\right)^{6}}{u}+\frac{\left(-x^{2}\right)^{3}}{3!}+\ldots & =\sum_{n=0}^{\infty} \frac{\left(-x^{2}\right)^{n}}{n!}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{n!} \\
\Rightarrow \int e^{-x^{2}} d x=\int 1-x^{2}+\frac{x^{4}}{2!}-\frac{x^{6}}{3!}+\frac{x^{1}}{4!} \cdots & =\int \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{n!} d x \\
& =\sum_{n=0}^{\infty} \int(-1)^{n} \frac{x^{2 n}}{n!} d x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1) n!}+C
\end{aligned}
$$

d) $\quad e^{x} \cos (x)$ (first 3 terms only)

$$
\begin{aligned}
& \text { Allernulive: } \\
& \text { find } f(0), f^{\prime}(0) \text {, } \\
& f^{\prime \prime}(c), f^{\prime \prime \prime}(v), \ldots \\
& \rightarrow \alpha_{0}=f(v), v_{1}=\frac{f^{\prime \prime}(v)}{\|} \\
& a_{2} z^{\prime \prime \prime}(u), a_{9} f^{\prime \prime \prime \prime} \frac{(u)}{1!}
\end{aligned}
$$

$$
\begin{aligned}
& e^{x} \cos (x)=\left(1+x+\frac{x^{6}}{2!}+\frac{x^{3}}{3!}+\ldots\right)\left(1-\frac{x^{6}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots\right)=
\end{aligned}
$$

$$
\begin{aligned}
& =1+x+0 x^{2}+x^{3}\left(\frac{1}{3!}-\frac{1}{2!}\right)+x^{4}\left(\frac{2}{4!}-\frac{1}{2!2!}\right)+\text { higher } \Rightarrow \underline{\left.a_{0}=1, a_{1}=1, v_{2}=0, v_{3}=-\frac{1}{3}, a_{4}=-\frac{1}{6}\right)} .
\end{aligned}
$$

es.
10. Suppose the indicated function has a power series around 0 . Find the value of the specified term:
a) $f(x)=\sin (2 x) \cos (3 x)$, find $a_{1} \quad a_{1}=\frac{f^{\prime}(0)}{16}=f^{\prime}(0)$ so we wed $f^{\prime}(x)$, lem $f^{\prime}(a)$.

$$
\begin{aligned}
& f^{\prime}(x)=2 \cos (2 x) \cos (2 x)-3 \sin (2 x) \sin (2 x) \\
& \Rightarrow f^{\prime}(0)=2 \quad \Leftrightarrow \quad a_{1}=2
\end{aligned}
$$

b) $f(x)=\tan (x)$, find $a_{2} \quad a_{2}=\frac{f^{\prime \prime}(0)}{2!}$ so weed f^{\prime}, $f^{\prime \prime}$, then $f^{\prime \prime}(\sigma)$.
$f(x)=\tan (x)$
$f^{\prime}(x)=\sec ^{2}(x)$

$$
\Rightarrow f^{\prime \prime}(0)=0 \Rightarrow a_{L}=0
$$

$f^{\prime \prime}(x)=2 \sec (x) \cdot \sec (x) \operatorname{con}(x)=2 \sec ^{2}(x) \tan (x)$

$$
\begin{aligned}
& \text { a) } f(x)=\sqrt{2+x}, \text { find } a_{5} \quad a_{r}=\frac{f^{(r)}(0)}{5!} \\
& \text { n } f(x)=(2+x)^{1 / 2} \\
& f^{\prime}(x)=\frac{f}{2}(2+x)^{-1 / 2} \\
& f^{\prime \prime}(x)=-\frac{1}{4}(2+x)^{-2 / 2} \\
& f^{\prime \prime \prime}(x)=\frac{1}{8}(2+x)^{-5 / 2} \\
& f^{(4)}(x)=-\frac{17}{16}(2+x)^{-9 / 2} \\
& f^{(r)}(x)=\frac{10 \Gamma}{32}(2+x)^{-9 / 2} \\
& \text { on } f^{(r)}(0)=\frac{10 r}{32} \cdot \frac{1}{2^{9 / 2}}
\end{aligned}
$$

11. The series $\sum_{n=1}^{\infty}\left(\frac{9}{10}\right)^{n}$ converges (why).

Geom brie series will $+9 / \%_{0}$ / converges

What number does it converge to?

What about $\sum_{n=1}^{\infty} n\left(\frac{2}{3}\right)^{n-1}$ Tricky: Kuou $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$

$$
\begin{aligned}
& \Rightarrow \frac{d}{d x}\left(\frac{1}{1-x}\right)=\frac{d}{d x} \sum x^{n} \\
& \Rightarrow \frac{1}{(1-x)^{2}}=\sum_{n=0}^{\infty} \frac{d}{d x} x^{n}=\sum_{n=1}^{\infty} n x^{n-1}
\end{aligned}
$$

Flung

$$
\begin{aligned}
\sum_{n=1}^{n} n\left(\frac{2}{j}\right)^{n-1} & =\frac{1}{\left(1-\frac{2}{3}\right)^{2}}= \\
& =9
\end{aligned}
$$

12. Find a Taylor series for the function $\arctan (x)$. Friclyy

$$
\begin{aligned}
& \frac{d}{d x} \arctan (x)=\frac{1}{1+x^{2}} \Rightarrow \frac{1}{\arctan (x)}=\int \frac{1}{1+x^{2}} d x=\int \frac{1}{1-\left(-x^{2}\right)} d x=\int \sum(-1)^{n} x^{2 n} d x= \\
&=\sum \int(-1)^{n} x^{2 n} d x= \\
&=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{2 n+1} x^{2 n+1}
\end{aligned}
$$

Use that series together with the fact that $\arctan (1)=\frac{\pi}{4}$ to find a series that converges to π.

$$
\begin{gathered}
\arctan (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{2 n+1} x^{2 n+1} \Rightarrow \frac{\pi}{4}=\arctan (1)=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{2 n+1}|1|^{2 n+1} \\
\Rightarrow \pi=4 \cdot\left(\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{2 n+1}\right)
\end{gathered}
$$

Finally, use the first 5 terms of that series to get an approximate value for π.

$$
\begin{aligned}
\pi=4 \cdot \sum_{n=0}^{\infty}(-1)^{n} \frac{1}{2 n+1} & =4\left[1-\frac{1}{3}+\frac{1}{5}-\frac{1}{4}+\frac{1}{4}-\frac{1}{11}+\ldots\right] \approx 4\left(1-\frac{1}{j}+\frac{1}{5}-\frac{1}{2}+\frac{1}{4}\right)= \\
& =4 \cdot \frac{663}{315}=\underline{3.3368}
\end{aligned}
$$

Note This is the fist lime you have seen somelluing that is easy to compute yet couverysto the complicated went ur ∇ T.

Note We could now define boll e and π as series:

$$
\begin{aligned}
& e=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{n!}+\frac{1}{4!}+\ldots=\frac{\sum_{n=0}^{\infty} \frac{1}{n!}}{\pi=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{f}+\frac{1}{4}-\frac{1}{1!}+\ldots=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{2 n+1}}
\end{aligned}
$$

