Practice Exam 3

Part 2 of the Answers

Find the derivatives of the following functions. You might use logarithmic differentiation if that simplifies your task:

$$
\begin{aligned}
& f(x)=5^{x}+\log _{2}\left(1+x^{2}\right) \\
& f^{\prime}(x)=\ln (5) 5^{x}+\frac{1}{\ln (2)} \frac{2 x}{1+x^{2}}
\end{aligned}
$$

Find the following limits. You might want to use l'Hospital's rule where appropriate

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} x^{3} e^{-x} \\
& \lim _{x \rightarrow \infty} \frac{x^{3}}{e^{x}}=\lim _{x \rightarrow \infty} \frac{3 x^{2}}{e^{x}}=\lim _{x \rightarrow \infty} \frac{6 x}{e^{x}}=\lim _{x \rightarrow \infty} \frac{6}{e^{x}}=0 \\
& \lim _{x \rightarrow \infty} \frac{\ln (x)}{\sqrt[3]{x}} \\
& \lim _{x \rightarrow \infty} \frac{\ln (x)}{\sqrt[3]{x}}=\lim _{x \rightarrow \infty} \frac{x^{-1}}{\frac{1}{3} x^{-\frac{2}{3}}}=\lim _{x \rightarrow \infty} \frac{3}{\sqrt[3]{x}}=0 \\
& \lim _{x \rightarrow 0} \frac{e^{3 x}-3 t-1}{x^{2}-x} \\
& \lim _{x \rightarrow 0} \frac{e^{3 x}-3 t-1}{x^{2}-x}=\lim _{x \rightarrow 0} \frac{3 e^{3 x}-3}{2 x-1}=0
\end{aligned}
$$

The edge of a cube was found to be 30 cm with a possible error of 0.1 cm . Use differentials to estimate the maximum possible error and the relative error in computing (a) the volume of the cube and (b) the surface area of the cube.
$V=x^{3}$ so that $d A=3 x^{2} d x=3 * 30^{2} * 0.1=270$. Since $A=30^{3}$ the relative error is $\frac{d A}{A}=\frac{270}{27000}=0.01=1 \%$
$S=6 x^{2}$ so that $d S=12 x d x=12 * 30 * 0.1=36$. Since $S=6 * 30^{2}=5400$ the reative error is $\frac{d S}{S}=\frac{36}{5400}=0.00666=0.67 \%$
15. Find the antiderivatives of the functions
a) $f(x)=3 x^{2}+\frac{1}{x}+e^{x}-\sin (x)$
$F(x)=x^{3}+\ln (x)=\cos (x)$
b) $g(x)=\frac{3}{1+x^{2}}$

$$
G(x)=3 \tan ^{-1}(x)
$$

16. Which of the following functions is the antiderivative of $f(x)=\ln (x)$?
a) $F(x)=\frac{1}{x}$ no
b) $F(x)=\frac{1}{2}(\ln (x))^{2}$ no
c) $F(x)=x \ln (x)-x \quad F^{\prime}=1 \ln (x)+x \frac{1}{x}-1=\ln (x)$ yes
17. Solve the following initial value problem:
a) Find $f(x)$ such that $f^{\prime}(x)=4 x^{5}-3 x^{2}$ and $f(1)=2$
$f(x)=\frac{4}{6} x^{6}-x^{3}+C$ and since $f(1)=\frac{4}{6}-1+C=2$ we have that $C=3-\frac{4}{6}=\frac{14}{6}=\frac{7}{3}$
b) Find $f(x)$ such that $f^{\prime \prime}(x)=12 x^{2}-6 x$ and $f^{\prime}(0)=2$ and $f(0)=2$
$f^{\prime}(x)=4 x^{3}-3 x^{2}+C$ and since $f^{\prime}(0)=C=2$ we have $f^{\prime}(x)=4 x^{3}-3 x^{2}+2$ But then $f(x)=x^{4}-x^{3}+2 x+D$ and again $\mathrm{D}=2$. So the answer is: $f(x)=x^{4}-x^{3}+2 x+2$
18. You are standing on the rim of deep hole in the ground, that is so deep you cannot see the bottom. You drop a stone into the hole and you notice that it hits the ground after 10 seconds. How deep is the hole?
$a=-g=-32$ so that $v(t)=-32 t+v_{0}$ and $s(t)=-16 t^{2}+v_{0} t+s_{0}$
The initial velocity $v_{0}=0$ and the initial height is $s_{0}=0$ as well. Thus, after 10 seconds we have $s(10)=-16 * 10^{2}=-1600$ feet, which would be the depth of the hole.
19. Bert is at bat and he happens to hit the incoming baseball 4 feet above the ground so that it goes straight up with initial velocity of $50 \mathrm{ft} / \mathrm{sec}$. There is a runner on third base and it would take him 10 seconds to run home. Will he make it before the ball hits the ground?

Again $a=-g=-32$ so that $v(t)=-32 t+v_{0}$ and $s(t)=-16 t^{2}+v_{0} t+s_{0}$
The initial velocity $v_{0}=50$ and the initial height is $s_{0}=4$. Thus, $s(t)=-16 t^{2}+50 t+4$. Now the time for the ball to hit the ground would be $s(t)=0$ or $-16 t^{2}+50 t+4=0$. Thus, $t=-0.07805$, $t=3.20305$. Time cannot be negative, so the ball hits the ground after 3.2 seconds, which is not enough for the runner on third to score.
20. Extra credit: Prove that the derivative of the inverse sine function is $\frac{d}{d x} \sin ^{-1}(x)=\frac{1}{\sqrt{1-x^{2}}}$ and that of the inverse tangent is $\frac{d}{d x} \tan ^{-1}(x)=\frac{1}{1+x^{2}}$

