Math 1401: Practice Exam 2
Disclaimer: This is a practice exam only. It is longer than the actual exam. What is the definition of derivative $\mathrm{f}^{\prime}(\mathrm{x})$?

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

What is the Chain Rule?

$$
\frac{d}{d x} f(g(x))=f^{\prime}\left(g(x) \cdot g^{\prime}(x)\right.
$$

What is a necessary condition for a function f to have a local extrema at $x=c$ f^{\prime} is tho of $x^{2} C$ or uncle fined
What can you say about a continuous function on a closed, bounded interval and absolute extrema?

What information about $\mathrm{f}(\mathrm{x})$ does f ' (x) provide? Inter. Jeer / Coed mon/ has
What information about $f(x)$ does $f^{\prime \prime}(x)$ provide? Concave ty /inf paint
True/False?
If $f^{\prime}(x)<0$ then f is concave down $f \quad$ If in der.)
If $\mathrm{f}^{\prime} '(\mathrm{x})=0$ then f has an inflection point at y
If f ' $(x)=0$ then f could have a maximum, or minimum, or neither
If f is differentiable then f must be continuous 8
If f ' $(x)=0$ or f ' (x) is undefined, then x is callederitical point

If $\mathrm{x}=\mathrm{c}$ is a critical point for f , then f must have a relative extrema at $\mathrm{x}=\mathrm{c}$

Picture Problems: Consider the graph of a function as shown:

In the coordinate system below you can see the graphs of $f(x)$ and its derivative $f^{\prime}(x)$. Who is the function, who is the derivative?

Id red function

Find, masts do points
For the graph shown below, draw the derivative $f^{\prime}(x)$ as best as you can. Where f has mus/ uni as

Please find the derivative for each of the following functions (do not simplify unless it is helpful).

$$
\begin{aligned}
& \left.f(x)=x^{2}\left(x^{4}-2 x\right)^{3} \quad f^{\prime}(x)=2 x\left(x^{4}-2\right)^{3}+x^{2} \cdot\right]\left(x^{4}-2\right)^{3} \cdot\left(4 x^{3}-2\right) \\
& f(x)=x \sin \left(x^{2}\right) \quad f^{\prime}(x)=\sin \left(x^{2}\right)+x \cos \left(x^{2}\right) \cdot 2 x \\
& f(x)=\frac{\sin \left(x^{3}\right)}{x^{4}-3} \quad f^{\prime}(x)=\frac{\cos \left(x^{3}\right) \cdot 3 x^{2} \cdot\left(x^{4}-3\right)-\operatorname{suh}\left(x^{2}\right)\left(J x^{4}\right)}{\left(x^{4}-3\right)^{2}} \\
& f(x)=\tan (x) \sqrt[3]{1-x^{2}} \quad f^{\prime}(x)=\sec ^{2}(x) \sqrt[3]{1-x^{2}}+\operatorname{lem}(x) \frac{1}{3}\left(1-x^{4}\right)^{-2 / 3}(-2 x) \\
& f(x)=\pi^{2} \sin \left(\sqrt{\frac{\pi}{6}}\right) \quad f^{\prime}(x)=0
\end{aligned}
$$

$$
f(x)=\frac{x^{2} \cos (1-x)}{(1-2 x)^{2}}
$$

For the function displayed below, find the following limits:

a) $\lim _{x \rightarrow \infty} f(x)=2$
b) $\lim _{x \rightarrow-\infty} f(x)$,
c) $\lim _{x \rightarrow 5^{+}} f(x)<$
d) $\lim _{x \rightarrow-5^{+}} f(x) \geq$

Suppose a function y is implicitly defined as a function of x via the equation $y^{3}-5 x^{2}=3 x$.
a) Find the derivative of y using implicit differentiation.

b) What is the equation of the tangent line at the point $(1,2)$.

$$
\begin{aligned}
& 0_{0} 3 \\
&>y+2) \cdot\}-y
\end{aligned}
$$

Find the slope of the tangent line to the graph of $y^{4}+3 y-4 x^{3}=5 x+1$ at the point $(1,-2)$, assuming that the equation defines y as a function of x implicitly.

$$
12 y^{\prime}=13 \text { 型 } 3 y^{\prime}-12 x^{2}=5
$$

$$
\begin{gathered}
\left.4 y^{3}\right\}^{\prime}+ \\
x=1 g=-2, \quad 4 \cdot(-8) y^{\prime}+3 y^{\prime}-12 \cdot 1=5 \\
-29 y^{\prime}=17 \quad 27 y^{\prime}=-\frac{17}{29}
\end{gathered}
$$

Find $\frac{d y}{d x}$ if $y=x^{2} \sin (y)$, assuming that y is an implicitly defined function of x.
etc

Find the following limits at infinity:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{2 x+3 x^{4}}{4 x^{(3)}-2 x^{2}+x-1}=\infty \\
& \lim _{x \rightarrow-\infty} \frac{x-x^{6}}{x^{6}-x^{2}+x-1} \sim-\frac{x^{5}}{x^{3}}=-x^{2} \rightarrow-\infty \\
& \lim _{x \rightarrow-\infty} \frac{4 x^{(3)}-2 x^{2}+x-1}{2 x-3 x^{0}}=0 \\
& \lim _{x \rightarrow-\infty} \frac{x^{3}-x^{2}+x-1}{x-3 x^{3}}=-1 / 3 \\
& \lim _{x \rightarrow-\infty} \frac{(3 x+4)(x-1)}{(2 x+7)(x+2)}=3 / 2 \\
& \lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}-1}}{x}=\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}\left(1-\frac{1}{x^{2}}\right)}}{x}=\lim _{x \rightarrow \infty} \frac{x \sqrt{1-\frac{1}{x^{2}}}}{x}=1
\end{aligned}
$$

Find all asymptotes, horizontal and vertical, if any, for the functions

$$
\begin{array}{ll}
f(x)=\frac{3 x^{2}+1}{9-x^{2}} & x= \pm 3 \text { vertical } \\
f(x)=\frac{x^{5}}{1+x^{4}} \quad \text { no cosyunptotes } \\
f(x)=\frac{x-3}{x^{2}-5 x+6} \quad=\frac{(x-3)}{(x-3)(x-2)} \quad \begin{array}{l}
x=2 \text { vevlical asympt } \\
\end{array} \quad \text { y } 0 \text { hervizoutab }
\end{array}
$$

If $f(x)=x^{3}+x^{2}-5 x-5$, find the intervals on which f is increasing and decreasing, and find all relative extrema, if any.

$$
f^{\prime}(x)=3 x^{2}+2 x-5=(3 x+5)(x-1)=0 \Rightarrow x=-5 / 3, x=1 \text { are crilicul }
$$

	inc	$-5 / 3$	dec	inc
f^{\prime}	+	-	+	
f	\nearrow	\searrow	7	

$x=-55$ is vel. max
$x=1$ wo rel. Mir

$$
(-\infty,-518) \cup(1, \infty) \text { incr. }
$$

$(-5 / 3,1)$ clecreasing
Determine where the function $f(x)=x^{4}-2 x^{2}$ is increasing and decreasing and find all relative extrema, if any.
same

Find the local maxima and minima for the function $f(x)=x^{\frac{1}{3}}(8-x)$

$$
f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}(8-x)-x^{1 / 3}=\frac{8-x}{3 x^{2 / 3}}-x^{1 / 3}=\frac{8-x}{3 x^{2 / 3}}-x^{1 / 3} \cdot \frac{3 x^{2 / 3}}{3 x^{2 / 3}}=\frac{8-x-3 x}{3 x^{2 / 3}}=\frac{8-4 x}{3 x^{2 / 3}}
$$

\Rightarrow critical $x=0,2 \quad$ (0 because f' is wolf at $x=0$)

$x=2$ is local max

Find the absolute extrema (i.e. absolute maximum and absolute minimum) for the function $f(x)=3 x^{4}-6 x^{2}$ on the interval $[0,2]$

$$
f^{\prime}(x)=12 x^{3}-12 x=12 x\left(x^{2}-1\right)=0 \Rightarrow x=0,+1,-1
$$

abs. extrema s

x	$f(x)$
0	0
1	-3
-1	

Find the absolute maximum and minimum of the function $f(x)=2 x^{3}+3 x^{2}-36 x$ on the interval [0, 4].
Do the same for $f(x)=\frac{x}{x^{2}+1}$ on $[0,3]$, or for $f(x)=3 x^{4}+4 x^{3}$ on [-2,0].

$$
f(x)=2 x^{3}+3 x^{2}-36 x \Rightarrow f(x)=6 x^{2}+6 x-36=6\left(x^{2}+x-6\right)=6(x+3)(x-2)=0
$$

critical $x=3,+2$

If $f(x)=x^{3}+x^{2}-5 x-5$, determine intervals on which the graph of f is concave up and intervals on which the graph is concave down.

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}+2 x-5 \\
& f^{\prime \prime}(x)=6 x+2=0 \quad \Rightarrow x=-\frac{1}{3}
\end{aligned}
$$

	$/{ }^{-1 / 3}$	
$f^{\prime \prime}$	-	t
f	\cap	v

Concave up: $(-1 / 3, \infty)$
concave down: $(-\infty,-1 / s)$

If $f(x)=12+2 x^{2}-x^{4}$, find all points of inflection and discuss the concavity of f. Do the same for $f(x)=x^{5}-5 x^{3}$,

$$
\begin{aligned}
& f^{\prime}(x)=4 x-4 x^{3} \\
& f^{\prime \prime}(x)=4-12 x^{2}=0
\end{aligned}
$$

| | $-1 / \sqrt{1 / 3}$ | | $\operatorname{sep}:\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ |
| :--- | :--- | :--- | :--- | :--- |
| $f^{\prime \prime}$ | - | + | - |
| f | \cap | \vee | \cap | down: $\left(-\infty,-\frac{1}{\sqrt{3}}\right) \cup\left(\frac{1}{\sqrt{3}}, \infty\right)$

$$
x= \pm \sqrt{\frac{1}{3}}
$$

Find the interval where $f(x)=1-x^{\frac{1}{3}}$ is concave up, if any.

eke

Graph the function $f(x)=\frac{x^{2}}{x^{2}-1}$. Note that $f^{\prime}(x)=\frac{-2 x}{\left(x^{2}-1\right)^{2}}$ and $f^{\prime \prime}(x)=\frac{2\left(3 x^{2}+1\right)}{\left(x^{2}-1\right)^{3}}$.
hovic axymp, $y=1$
vest. cesput, $x= \pm 1$
critical: $x=0,1,-1$
poss.infl. $x=+1,-1$

		-1	0	1
f^{\prime}	+	+	-	-
f^{n}	+	-	-	+
f	y		∞	

Make fleet tolling all asymptotes (horizontal and vertical) and clearly label any maximum, minimum, and inflection points. Then do the same for the function $f(x)=\frac{8-4 x}{(x-1)^{2}}$, or $f(x)=\frac{2 x^{2}-8}{x^{2}-16}$, or $f(x) \frac{x^{2}-1}{x^{3}}$ $f(x)=\frac{8-4 x}{(x-1)^{2}}, f^{\prime}(x)=\frac{4(x-3)}{(x-1)^{3}}, f^{\prime \prime}(x)=\frac{-8(x-4)}{(x-1)^{4}}$
werheal any, $x=1 \quad f(3)=-1$

$$
f(4)=-\frac{8}{9}
$$

$$
\begin{aligned}
& \text { noviboulal any } y=0 \\
& \text { critical: } x=l_{1} x=3 \\
& \text { poss. inf: } x=4,1 \\
& \begin{array}{l|l|l|l|l}
f^{\prime} & + & - & + & + \\
\hline f^{\prime \prime} & + & + & + & - \\
\hline f & y & & &
\end{array}
\end{aligned}
$$

A 13 meter ladder is leaning against a wall If the top of the ladder slips down the wall at a rate of $2 \mathrm{~m} / \mathrm{sec}$, how fast will the foot be moving away from the wall when the top is 5 m above the ground.

$$
x=\gamma(t h y=y(t)
$$

$$
\begin{array}{ll}
\text { Know } \frac{d y_{1}}{d t}=-2 \\
y=5 \Rightarrow x=\sqrt{169-25}=12
\end{array}
$$

$$
2 x x^{\prime}+2 y y^{\prime}=0 \Rightarrow x x^{\prime}=-y y^{\prime} \quad \Rightarrow \quad x^{\prime}=-y^{\prime} \frac{y}{x}=2 \cdot \frac{5}{12}=5 / 6
$$

A liquid form of penicillin manufactured by a pharmaceutical firm is sold in bulk at a price of $\$ 200$ per unit. If the total production cost (in dollars) for x units is $C(x)=500,000+80 x+0.003 x^{2}$ and if the production capacity of the firm is at most 30,000 units in a specified time, how many units of penicillin must be manufactured and sold in that time to maximize the profit?
uninliuve cold

A farmer wants to fence in a piece of land that borders on one side on a river. She has 200 m of fence available and wants to get a rectangular piece of fenced-in land. One side of the property needs no fence because of the river. Find the dimensions of the rectangle that yields maximum area. (Make sure you indicate the appropriate domain for the function you want to maximize). Please state your answer in a complete sentence.

$$
\begin{aligned}
& C(x)=5000700+80 x+0.003 x^{2} \\
& c^{\prime}(x)=80+0.006 x=0 \\
& 22 x=-13333.33 \text { not in intoreat } \\
& \left.c x \in[0,30000] \frac{x}{0} \right\rvert\, c \text { uni }
\end{aligned}
$$

Find the dimensions of the rectangle of maximum area that can be inscribed in a semicircle of radius 16 , if one vertex lies on the diameter.

$$
x^{2}+y^{2}=16
$$

An open box with a rectangular base is to be constructed from a rectangular piece of cardboard 16 inches wide and 21 inches long by cutting out a square from each corner and then bending up the sides. Find the size of the corner square which will produce a box having the largest possible volume.

$$
\begin{aligned}
V & =(16-2 x)(2 l-2 x) \cdot \gamma \\
& x \in[0,8]
\end{aligned}
$$

Rest wa Maple

$-1+1-1+$

