Calculus 1401: Practice Exam 1

- 1. State the following definitions or theorems:
 - a) Definition of a function f(x) having a limit L
 - b) Definition of a function f(x) being continuous at x = c
 - c) Definition of the derivative f'(x) of a function f(x)
 - d) The "Squeezing Theorem"
 - e) The "Intermediate Value Theorem"
 - f) Theorem on the connection of differentiability and continuity
 - g) Derivatives of sin(x) and cos(x)
 - h) Power rule, product rule, quotient rule
 - i) Second derivative f"

- e) Is the function continuous at x = -1?
- f) Is the function continuous at x = 1?
- g) Is the function differentiable at x = -1?
- h) Is the function differentiable at x = 1?
- i) Is f'(0) positive, negative, or zero?
- k) What sign is f'(-2)?
- 1) extra credit: what sign is f"'(0)

3. Find each of the following limits (show your work):

a)
$$\lim_{x \to 3} 4\pi$$

b) $\lim_{x \to 3} \frac{x^2 - 2x}{x + 3}$
c) $\lim_{x \to 3} \frac{3 - x}{x^2 + 2x - 15}$
d) $\lim_{x \to 1^+} \frac{x}{x - 1}$
e) $\lim_{x \to 1^-} \frac{x}{x - 1}$
f) $\lim_{x \to 1} \frac{x}{x - 1}$
g) $\lim_{x \to 0} \frac{\sin^2(x)}{3x^2}$
h) $\lim_{x \to 0} \frac{\sin^2(x)}{\cos^2(x)}$
i) $\lim_{x \to 0} \frac{\sin(6x)}{7x}$
j) $\lim_{t \to 0} \frac{t^2}{1 - \cos(t)}$
k) $\lim_{x \to 0} x \sin(\frac{1}{x})$
l) $\lim_{x \to \infty} \frac{3x^2 - 1}{2 - 3x - 4x^2}$

m)
$$\lim_{x \to \infty} \frac{3x^2 - 1}{2 - 3x}$$
 n)
$$\lim_{x \to \infty} \sqrt{x^2 - 1} - x$$

4. Consider the following function:
$$f(x) = \begin{cases} x^2, & \text{if } x \ge 0\\ x-2, & \text{if } x < 0 \end{cases}$$

2. The picture on the left shows the graph of a certain function. Based on that graph, answer the questions:

- a) Find $\lim_{x\to 0^-} f(x)$ b) Find $\lim_{x\to 0^+} f(x)$
- c) Find $\lim_{x\to 2} f(x)$ (note that x approaches *two*) d) Is the function continuous at x = 0
- f) Is $f(x) = \begin{cases} \frac{x^2 1}{x + 1}, & \text{if } x \neq -1 \\ 17, & \text{if } x = -1 \end{cases}$ continuous at -1 ? If not, is the discontinuity removable?
- g) Is there a value of k that makes the function g continuous at x = 0? If so, what is that value? $g(x) = \begin{cases} x - 2, & \text{if } x \le 0 \\ k(3 - 2x) & \text{if } x > 0 \end{cases}$
- 5. Please find out where the following functions are continuous:

a)
$$f(x) = x^2 - 2$$

b) $f(x) = \frac{x}{1 - x^2}$
c) $f(x) = \begin{cases} \frac{\sin(x)}{x}, & \text{if } x \neq 0\\ 1, & \text{if } x = 0 \end{cases}$
d) $f(x) = \begin{cases} \frac{x^3 - 3x^2}{2x}, & \text{if } x \neq 0\\ 2, & \text{if } x = 0 \end{cases}$

6. Find the value of k, if any, that would make the following function continuous at x = 4.

$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & \text{if } x \neq 2\\ k & \text{if } x = 2 \end{cases}$$

- 6. Is the function f(x) = |x| differentiable at zero? Show your work.
- 7. Prove that the function $x^3 4x + 1 = 0$ has at least one solution in the interval [1, 2]. Also, prove that the equation x = cos(x) has at least one solution in the interval $[0, \pi/2]$
- 8. Use the *definition* of derivative to find the derivative of the function $f(x) = 3x^2 + 2$. Note that we of course know by our various shortcut rules that the derivative is f'(x) = 6x. Do the same for the function

$$f(x) = \frac{1}{1-x}$$
 and for $f(x) = \sqrt{x}$ (use **definition**!)

9. Consider graph of f(x) you see below, and find the sign of the indicated quantity, if it exists. If it does not exist, please say so.

10. Consider the function whose graph you see below, and find a number x such that

10. Find the derivative for each of the following functions (do not simplify unless you think it is helpful).

$$f(x) = \pi^{2} + x^{2} + \sin(x) + \sqrt{x}$$

$$f(x) = x^{2}(x^{4} - 2x)$$

$$f(x) = x^{2}(x^{3} - \frac{1}{x})$$

$$f(x) = 3x^{5} - 2x^{3} + 5\sqrt{x^{3}} - \sqrt{2}$$

$$f(x) = \frac{x^{4} - 2x + 3}{x^{2}}$$

$$f(x) = \frac{x^{3} \sin(x)}{x^{4} - 3}$$

$$f(x) = \sin(x)\cos(x)$$

$$f(x) = \sin^{2}(x)$$

$$f(x) = \frac{\sin(x)}{x^{4} - 3}$$

$$f(x) = \frac{\sec(x)}{x^{4}}$$

$$f(x) = \tan(x)\sqrt{x}$$

$$f(x) = \frac{x^{2} \sin\left(\frac{\pi}{6}\right)}{x^{-3}}$$

$$f(x) = \frac{x^{2} \cos(x)}{x^{-4} - 4x}$$

$$f(x) = \frac{x^{2}}{x^{2} - 1}$$

$$f(x) = \frac{x \sin(x)}{x - 3}$$

$$f(x) = x \cos(x), \text{ find } f''(x)$$

$$f(x) = x \cos(x), \text{ find } f'''(x)$$

$$f(x) = 3x^5 - 2x^3 + 5x - 1$$
, find $f^{(7)}(x)$

- 11. Find the equation of the tangent line to the function at the given point: a) $f(x) = x^2 - x + 1$, at x = 0b) $f(x) = x^3 - 2x$, at x = 1
- 12. For the function displayed below, find the following limits:

13. Suppose the function $f(x) = x^2 - 3x + 2$ indicates the position of a particle.

- a) Find the average speed between t = 5 and t = 10 seconds.
- a) Find the velocity after 10 seconds
- b) Find the acceleration after 10 seconds
- c) When is the particle at rest (other than for t = 0)
- d) When is the particle moving forward and when backward

14. Find the following limits at infinity:

$\lim_{x \to \infty} \frac{2x + 3x^4}{4x^3 - 2x^2 + x - 1}$	$\lim_{x \to \infty} \frac{x - x^5}{x^3 - x^2 + x - 1}$
$\lim_{x \to \infty} \frac{4x^3 - 2x^2 + x - 1}{2x - 3x^4}$	$\lim_{x \to -\infty} \frac{x^3 - x^2 + x - 1}{x - 3x^3}$
$\lim_{x \to -\infty} \frac{(3x+4)(x-1)}{(2x+7)(4x+2)}$	$\lim_{x\to\infty}\frac{\sqrt{x^2-1}}{x}$