Sample Quiz

1. Consider the function $f(x)=x^{4}-2 x^{2}+1$. Determine and classify the local extrema and intervals where f is increasing or decreasing.
2. Consider the function $f(x)=x^{4}-6 x^{2}$. Find the intervals of concavity and identify all inflection points, if any.
$f(x)=x^{4}-6 x^{2}$. $\quad \nabla_{0}$ deed for inflection pout ave need $f^{\prime \prime}(x)$. So,

$$
\begin{aligned}
f^{\prime}(x) & =4 x^{3}-12 x \\
f^{\prime \prime}(x) & =12 x^{2}-12 \\
& =12\left(x^{2}-1\right)=0 \\
x & =+1,-1
\end{aligned}
$$

\Rightarrow SoU $x=+1,-1$ are indeed inflection points (beceurse f does chanip dviechon I
3. Sketch the function $f(x)=\frac{x^{2}}{x^{2}-4}$, including all asymptotes, extrema, inflection points, intervals of increase, decrease, concave up, and concave down

$$
\begin{aligned}
& f(x)=\frac{x^{2}}{x^{2}-4} \\
& f^{\prime}(x)_{0}-\frac{8 x}{\left(x^{2}-4\right)^{2}}=0 \\
& \Rightarrow x=0(4) \\
& f^{\prime \prime}(x)=\frac{8\left(3 x^{2}+4\right)}{\left(x^{2}-4\right)^{3}}=0
\end{aligned}
$$

(3) Values:

(1) Domain: $x \neq \pm$
(2) Asymptotes:

$$
x= \pm 2, y=1
$$

$\left(\lim _{x \rightarrow \infty} f(x)=1\right)$
(3) Crilicnl: $x= \pm 2, x=0$

Poss ingle. $x= \pm 2$
${ }^{\text {n never }}$ (ul $x, y=0$)

$$
f(0)=0
$$

$$
f(+2) \text { andemald }
$$

$$
\begin{aligned}
& f(x)=x^{4}-2 x^{2}+1 \text {. To check for local extern, we need } f^{\prime}(x) \text {. So: } \\
& f^{\prime}(x)-4 x^{3}-4 x= \\
& =4 x\left(x^{2}-1\right)=0 \\
& \text { c) } x=0, x-h \quad x=+1 \\
& \text { ane silica. }
\end{aligned}
$$

