Practice Exam 3

1．Answer the following questions．Be concise：
a）What is the definition of the indefinite integral $\int f(x) d x$ auticlerivalure（function $+c$ ）
b）What is the mathematical definition of the definite integral $\int_{a}^{b} f(x) d x$ ？

$$
=\lim _{h \rightarrow \infty} f\left(x_{1}\right) \Delta x_{1}+f\left(x_{2}\right) \Delta x_{2} t_{-\infty}+f\left(x_{n}\right) \Delta x_{h}
$$

$=1$
$(x) d x$
area curler curve $f(x)$ ，if f is positive
d）What is the MVT for Integrals（include a graphical interpretation）．

$$
\int_{a}^{5} f(x) d x=f(v)(5-a)
$$

 Green area $=$ oreugls area
e）State the first fundamental theorem of calculus．What is that theorem good for，in your own words？

$$
\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}=F(b) \rightarrow F\left(e_{1}, F\right. \text { arlichorvalve. Geod bor evaluating iwteprabo }
$$

f）State the second fundamental theorem of calculus．What is that theorem good for，in your own words？
If $g(x) \int_{0}^{⿲ 丶 丶 ㇒ L}$
g）What is the difference between $\int_{a}^{b} f(x) d x$ and $\int f(x) d x$
number function
h）What is the definition of $\ln (x), \arcsin (x), \operatorname{arcos}(x)$ ，and $\arctan (x)$ ．What is the derivative of each of those functions？
All are dehivise as
inverse functions
i）What is l＇Hopital＇s Rule and why is it so useful？

$$
\frac{d}{d x} \ln (x)=\sqrt{2} x, \quad d x \arcsin (x)=\sqrt[1]{1-x^{2}}, d / d x \operatorname{arcces}(x)=-\sqrt{1-x^{6}}
$$

$$
d / d x \text { aretes }(x)=1 / 1+x^{2}
$$

$\lim _{x \rightarrow c} \frac{f(x)}{f(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ if $f(0)-q(0)=0$ ．Urafus secure it apples ts difficult
j）What is＂logarithmic differentiation＂and when is it helpful？
 of loges thar
k）What is＂exponential growth＂and＂exponential decay＂？

$$
\begin{aligned}
& A=A_{0} e^{k h}, k>0 \quad \Rightarrow e x p \text { arowh } \\
& A=A_{0} e^{k h} k<0 \quad \rightarrow \text { exp. decent }
\end{aligned}
$$

2. Consider the following definite integral: $\int_{0}^{2} 4-x^{2} d x$ (The integrand is depicted below).
a) Approximate the value of that definite integral by using 4 subdivisions and right rectangles in the corresponding

$$
\begin{aligned}
& \Rightarrow A \approx \frac{1}{2}\left(f\left(\frac{1}{2}\right)+f(1)+f\left(\frac{3}{2}\right)+0\right)= \\
&=\frac{1}{2}\left(4-\frac{1}{4}+4-1+4-\frac{9}{4}\right)= \\
&=12\left(11-\frac{1}{4}\right)=\frac{3}{4}-\frac{1}{2}=\frac{12}{4}=4.25
\end{aligned}
$$

b) Find the exact value of that definite integral by using the first fundamental theorem of calculus. Compare with the answer in (a).

$$
\int_{0}^{4} 4-x^{\prime} d x-4 x-\left.\frac{3}{x}\right|_{0} ^{2}\left(p-\frac{p}{5}\right)-0-\frac{16}{3}=\frac{5.33}{\Longrightarrow}
$$

3. Below are the graphs of four functions. For each graph, decide whether $\int_{0}^{5} f(x) d x$ is positive, negative, or zero.

4. Evaluate each of the following integrals.

$$
\begin{aligned}
& \int 3 x^{2}-\frac{5}{x^{3}}+\sqrt[3]{x}-2 \cos (x) d x \\
& x^{3}+5 / 2 x^{-2}+3 x^{4 / 3}+2 \sin ^{\prime}(x)+C \\
& \int x^{2}+\frac{1}{\sqrt{x}}+\pi^{2} d x \\
& \frac{1}{5} x^{3}+2 x^{1 / 2}+\pi^{2} X+C
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{2}{x} d x=\ln (x)+C \\
& \int\left(x+\frac{1}{x}\right)^{2} d x=\int x^{2}+2+\frac{1}{x^{2}} d x^{2} \frac{1}{5} x^{3}+2 x-x^{-1}+C \\
& \int \frac{5}{1+x^{2}} d x=5 \operatorname{arclen}(x)+C \\
& \int 5 e^{x}-\frac{7}{3 \sqrt{1-x^{2}}} d x=5 e^{x}-7 \arcsin (x)+C
\end{aligned}
$$

5. Evaluate each of the following definite integrals.

$$
\begin{aligned}
& \int_{0}^{\pi / 2} \cos (x)-3 \sin (x) d x \\
& 0 \quad=-2 \\
& \int_{1}^{2} x(x-1) d x=5 / 6
\end{aligned}
$$

$$
\begin{aligned}
& \int_{1}^{2} \frac{2-t^{3}}{t^{2}} d t a-12 \\
& \int_{\pi}^{\pi} \cos \left(4 x^{2}\right) d x \text { (trick question) } \int_{\pi}^{\pi} \text { amylhin } d X=
\end{aligned}
$$

6. At SLAC (Stanford Linear Accelerator) the initial position of a particle was recorded at time $\boldsymbol{t}=\boldsymbol{0}$ to be 10 m . Several detectors were used to record the speed of the particle, and it could be determined that the velocity function of the particle was given by $\boldsymbol{v}(\boldsymbol{t})=4 \boldsymbol{t}^{2}+$ st. What is the distance function of the particle, and where is the particle after 5 seconds?

$$
v(1)=4 k^{2}+3 t \rightarrow s(t)=\frac{4}{3} t^{3}+\frac{3}{2} t^{+}+C . \quad s(0)=10 \rightarrow C=10
$$

7. Suppose that gasoline is increasing in price according to the equation $p(t)=1.2+0.04 t$ where p is the dollar price per gallon, and t is the time in years, with $t=0$ representing 1990. If an automobile is driven 15,000 miles a year, and gets M miles per gallon, the annual fuel cost is $C=\frac{15000}{M} \int_{t}^{t+1} p(t) d t$. Estimate the annual fuel cost (a) for the year 2000 and (b) for the year 2005.

8. Define a function $S(x)=\int_{0}^{x} \cos ^{2}\left(t^{2}\right) d t$. Then find $\mathrm{S}(0), \mathrm{S}^{\prime}(\mathrm{x})$, and $\mathrm{S}^{\prime \prime}(\mathrm{x})$. Where is the function increasing and decreasing?

$$
\begin{aligned}
& S(0)=\int_{0}^{0}-d t=0 \\
& S^{\prime}(x)=\cos ^{2}\left(x^{2}\right) \quad \Rightarrow \quad S^{\prime \prime}(x)=2 \operatorname{ces}\left(x^{2}\right) \cdot\left(-\sin \left(x^{2}\right)\right) \cdot 28
\end{aligned}
$$

Also, if $G(x)=\int_{x}^{x^{2}} \sin \left(t^{2}\right) d t$ then find $\mathrm{G}(1)$ and $\mathrm{G}^{\prime}(\mathrm{x})$.

$$
G(l)=\left\{-x+0 \quad \sigma^{\prime}(x)=(d x d y d x d y\right.
$$

Finally, define $H(x)=\int_{0}^{x} 5 e^{t}-3 t^{2} d t$. Find $\mathrm{H}(\mathrm{x})$ using the $1^{\text {st }}$ Fund. Theorem of Calculus, then compute the derivative of that function. Compare that with $\frac{d}{d x} H(x)$ as worked out with the $2^{\text {nd }}$ Fund. Theorem of Call.
9. Find the derivatives of the following functions. You might use logarithmic differentiation if that simplifies your task:
10. Simplify $\log _{2}\left(\frac{x^{3} y}{z^{4}}\right)$ and $2 \ln (4)-\ln (2)$
11. The half-life or radium-226 is 1590 years. A sample of radium- 226 has a mass of 100 mg . Find a formula about how much of the substance remains after t years. Find the mass after 1000 years. Also, find out how long it takes until the original mass of 100 mg is reduced to 80 mg .

- $A(1)-100 \cdot e^{-\frac{2(1)}{40}+t}$

12. Use the fact that the world population was 2560 million in 1950 and 3040 million in 1960.Assuming exponential growth, what would the population of the world be in 2020 ?

$$
\begin{aligned}
& f(x)=2 e^{5 x^{2}}+7 \ln \left(x^{2}+3\right) \\
& f^{\prime}(x)=2 e^{8 x^{2}} \cdot 10 x+7 / x^{2}+3+2 x \\
& f(x)=\ln \left(\frac{\sqrt{x-1}}{(x-1)^{2}}\right)=\frac{1}{2} \ln (x-1)-2 \ln (x-1)=\frac{-3}{2} \ln (x-1) \\
& \Rightarrow f^{\prime}(x)=-\frac{2}{2} \frac{1}{x-1} \\
& f(x)=(x-1)^{2} \ln \left(\sqrt{x^{2}-1}\right)=(x-1)^{2} \cdot \frac{1}{2} \ln \left(x^{2}-1\right) \\
& f^{\prime}(x)=2(x-1) \cdot 1 \cdot \ln \sqrt{x^{2}-1}+(x-1)^{2} \cdot f \frac{1}{x^{2}-1} \cdot d x \\
& g=f(x)=\frac{(x-1)^{2}}{(x+1)^{3}}(x+2)^{4} \\
& \ln (y)=2 \ln (x-1)+4 \ln (x+n)-3 \ln (x+1) \\
& \Rightarrow \begin{array}{l}
\frac{1}{y} \cdot y^{\prime}=\frac{2}{x^{4}+t^{4}} x+2-\frac{3}{d+1} \\
g(x)=\frac{\sqrt{x^{2}-1}}{x^{5}(x-4)^{4}}
\end{array} \quad \rightarrow g^{\prime}=\left(\frac{2}{x-1}+\frac{4}{x+2}-\frac{1}{x+1}\right), y^{\prime}
\end{aligned}
$$

13. Evaluate $\sin ^{-1}\left(\frac{1}{2}\right)$ and $\tan \left(\arcsin \left(\frac{1}{3}\right)\right)$

$$
\begin{aligned}
& \sin ^{-1}\left(\frac{1}{2}\right)=\theta \\
\Rightarrow & \frac{1}{2}=\sin (\theta) \text { os } \theta=\pi / 6
\end{aligned}
$$

$\tan (\arcsin (1 / z)$

$$
\theta-\arcsin (1 / s)
$$

$$
\left(\begin{array}{l}
W \\
\left(l_{s}\right) \rightarrow \sin ^{2}(\theta)=123 \\
3
\end{array}\right.
$$

14. Show that $\cos \left(\sin ^{-1}(x)\right)=\sqrt{1-x^{2}}$

$$
\theta=\sin ^{-1}(x) \Rightarrow \sin (\theta)=x=\frac{x}{1}
$$

$$
\text { 2) } \cos (\theta)=\frac{\sqrt{1-x^{8}}}{1}+\sqrt{1-x^{0}}
$$

15. Find the derivatives of $f(x)=\mathrm{x}^{2} \sin ^{-1}(3 x)$ and $g(x)=\frac{\arctan (3 x)}{\arccos (2 x)}$ and $h(x)=x \sqrt{\tan ^{-1}\left(x^{2}\right)}$

$$
\left.f^{\prime}(x)=2 x \sin ^{-1}(\eta x)+x^{2} \frac{1}{\sqrt{1-(3 x)^{2}}} \cdot\right\}
$$

$$
g(x)=\frac{\frac{3}{1+(3 x)^{2}} \cdot \arccos (2 x)-\operatorname{arccon}(3 x) \cdot \frac{(-2)}{\sqrt{1-(2 x)^{2}}}}{\text { 16. Prove that } \sin ^{-1}(x)+\cos ^{-1}(x)=\frac{\pi}{2} \text { for all } x \text {. Hint: Find the derivat }}
$$

16. Prove that $\sin ^{-1}(\mathrm{x})+\cos ^{-1}(\mathrm{x})=\frac{\pi}{2}$ for all x. Hint: Find the derivative and interpret your answer
et $F(x)=\sin ^{-1}|x|+\cos ^{-1}(x) \Rightarrow F \mid(x)=1 / \sqrt{1-x^{8}}-1 / \sqrt{1-x^{2}}=0 \quad$ for will.
\Rightarrow IF is consent. Since $F(0)=0+\pi / 2$, flat coustenst is $\pi / 2$.
17. Find the following limits. You might want to use l'Hospital's rule (but not all limits require that and for some it might not be appropriate)

$\lim _{x \rightarrow 3} \frac{x^{2}-9}{x+3}=\frac{0}{6}=0$
$\lim _{x \rightarrow 1} \frac{\ln (x)}{x-1}=\lim _{x \rightarrow 1}{ }^{l}(t)=1$
$\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3} \stackrel{l^{\prime} \mid x}{3} \lim _{x \rightarrow 1} \frac{2 x}{1}=6$
$\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{x}}=\lim _{x \rightarrow \infty} \frac{2 x}{e^{x}}>\lim _{x \rightarrow \infty} \frac{2}{e^{x}}=0$

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\tan (x)-x}{x^{3}}=\left\{\left.l^{\prime}|1| \lim _{x \rightarrow 0} \frac{\sec ^{2}(x)-1}{3 x^{2}}=\lim _{x \rightarrow-1} \frac{\tan ^{2}(x)}{3 x^{2}}=\ell^{\prime} \right\rvert\,(1) \lim _{x \rightarrow 0} \frac{2 \tan (x) \cdot \sec ^{2}(x)}{6 x}=\right. \\
& \text { (no l'Hospial!) } \\
& \lim _{x \rightarrow 0^{+}} \ln (x)=\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{1 / x}=\left(l^{\prime}(x)\right) \lim _{x \rightarrow 0^{+}} \frac{1 / 3}{-1 / 2 v^{2}}=\lim _{x \rightarrow 0^{+}}(-x)=0 \\
& \lim _{x-\frac{\pi}{2}} \sec (x)-\tan (x) \\
& \text { Cre Coolform Arama! }
\end{aligned}
$$

