Calculus 1501: Practice Exam 1

1. State the following definitions or theorems:
a) Definition of a function $f(x)$ having a limit L
b) Definition of a function $f(x)$ being continuous at $x=c$
c) Definition of the derivative $f^{\prime}(x)$ of a function $f(x)$
d) The "Squeezing Theorem"
e) The "Intermediate Value Theorem"
f) Theorem on the connection of differentiability and continuity
g) Derivatives of $\sin (\mathrm{x})$ and $\cos (\mathrm{x})$ (with proofs)
2. The picture on the left shows the graph of a certain function. Based on that graph, answer the questions:

3. Find each of the following limits (show your work):
a) $\lim _{x \rightarrow 3} 4 \pi \quad 4 \pi$
b) $\lim _{x \rightarrow 3} \frac{x^{2}-2 x}{x+3}=\frac{9-6}{6}=\frac{1}{2}$
c) $\lim _{x \rightarrow 3} \frac{3-x}{x^{2}+2 x-15}=\lim _{x \rightarrow 3} \frac{-(x-3)}{(x-3)(x+5)}=-\frac{1}{8}$
d) $\lim _{x \rightarrow 1^{+}} \frac{x}{x-1} \sim \frac{f}{10}=\infty$
e) $\lim _{x \rightarrow 1^{-}} \frac{x}{x-1} \sim \frac{t}{-0}=-\infty$
f) $\lim _{x \rightarrow 1} \frac{x}{x-1}$ U.
g) $\lim _{x \rightarrow 0} \frac{\sin ^{2}(x)}{3 x^{2}}=1 / 3$
h) $\lim _{x \rightarrow 0} \frac{\sin ^{2}(x)}{\cos ^{2}(x)}=0$
i) $\lim _{x \rightarrow 0} \frac{\sin (6 x)}{7 x}=\operatorname{lin}_{\operatorname{lin}} \frac{1}{7} \cdot \frac{6}{6 x} \frac{\sin (6 x)}{6 x}=\frac{6}{7}$ $\operatorname{lin} \frac{1}{3} \sin (x) \frac{\sin (x)}{x}$
k) $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0$
1) $\lim _{x \rightarrow-\infty} \frac{3 x^{2}-1}{2-3 x-4 x^{2}}=-\frac{7}{4}$.
j) $\lim _{t \rightarrow 0} \frac{t^{2}}{1-\cos (t)}$
square
m) $\lim _{x \rightarrow-\infty} \frac{3 x^{2}-1}{2-3 x}=+\infty$
n) $\lim _{x \rightarrow \infty} \sqrt{x^{2}-1}-x \cdot \frac{\sqrt{x^{2}-1}+x}{\sqrt{x^{2}-1}+x}=\frac{\left(x^{2}-1\right)-x^{6}}{\sqrt{x^{8}-1}+x}=\frac{-1}{\sqrt{x^{2}-1}+x} \rightarrow 0$

$$
\lim _{x \rightarrow-\infty} \frac{3 x^{2}}{-3 x}++\infty
$$

4. Consider the following function: $f(x)=\left\{\begin{array}{lll}x^{2}, & \text { if } x \geq 0 & \lim _{x \rightarrow 0^{-}} f(x)=-2 \\ x-2, & \text { if } x<0 & x_{0}\end{array}\right.$ $\lim _{x \rightarrow 0^{+}} f(x)=0$
a) Find $\lim _{x \rightarrow 0^{-}} f(x)=-2$
b) Find $\lim _{x \rightarrow 0^{+}} f(x)=0$
c) Find $\lim _{x \rightarrow 2} f(x)$ (note that x approaches two, not zero)
d) Is the function continuous at $=0$
f) Is $f(x)=\left\{\begin{array}{ll}\frac{x^{2}-1}{x+1}, & \text { if } x \neq-1 \\ 17 & \text { if } x=-1\end{array}\right.$ continuous at -1 ? If not, is the discontinuity removable?

$$
\left.\lim _{x \rightarrow 1}(x) \cdot \lim _{x=1} \sum_{x=1}^{x-1)}=\lim _{x \rightarrow-1} \frac{x n(x-1)}{x+1}+-2 \neq f(-1) \right\rvert\, z
$$

so nod continuous at $x=-1$. Remarebb!"
g) Is there a value of k that makes the function g continuous at $x=0$? If so, what is that value?

$$
\begin{aligned}
& g(x)=\left\{\begin{array}{l}
x-2 \\
k(3-2 x) \\
\lim _{x \rightarrow 0^{-}} f(x)=-2, \lim _{x \rightarrow 0^{+}} f(x)=\text { sk } \\
f(x) \\
\text { wat then to be equal , so }
\end{array}\right.
\end{aligned}
$$

set ko -2
5. Please find out where the following functions are continuous:
a) $f(x)=\cos \left(x^{2}-2\right)$
b) $f(x)=\frac{x}{1-\sin ^{2}(x)}$
every where

$$
\text { all } x \neq \pm \frac{\Gamma}{2}, \pm \frac{3 \pi}{2} \pm \frac{S \pi}{2}, \ldots
$$

c) $f(x)=\left\{\begin{array}{ll}\frac{\sin ^{2}(x)}{x}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{array}\right.$ frown x
d) $f(x)= \begin{cases}\frac{\sin (x)}{2 x}, & \text { if } x \neq 0 \\ 2, & \text { if } x=0\end{cases}$

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin ^{2}(x)}{x} & =\lim _{x \rightarrow 0} \frac{\sin (x)}{x} \cdot \sin (x) \\
& =1 \cdot 0=0=f(0)
\end{aligned}
$$

6. Find the value of k, if any, that would make the following function continuous at $x=4$.

$$
f(x)=\left\{\begin{array}{ll}
\frac{x^{2}-4}{x-2} & \text { if } x \neq 2 \\
k & \text { if } x=2
\end{array} \quad \lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=4-80 \text { moke } k=4\right.
$$

7. Prove that the function $x^{3}-4 x+1=0$ has at least one solution in the interval [1, 2]. Also, prove that the function $x=\cos (x)$ has at least one solution in the interval $[0, \pi / 2]$
$f(x)=x^{3}-4 x+1 . f(1)=-2<0, f(2)=1>0$. Since f is abs conk. we can use Intern. Value theorems to conclude that there is at least one c in $(1,2)$ with $f(c)=0$
$x=\cos (x) \Leftrightarrow x-\cos (x)=0$. Let $g(x)=x-\cos (x)$. Then g in cowl. and $g(0)=-\cos (0)=-1<0$ and $g(\pi / 2)=\pi / 2-0=\frac{\pi}{2}>0$. Whens. ln Int. Value Theorem $g(c)=0$ for some $c \in\left(0, \frac{\pi}{2}\right)$.
8. Use the definition of derivative to find the derivative of the function $f(x)=3 x^{2}+2$. Note that we of course know by our various shortcut rules that the derivative is $f^{\prime}(x)=6 x$. Do the same for the function $f(x)=\frac{1}{1-x}$ and for $f(x)=\sqrt{x}$ (use definition!)

$$
\begin{aligned}
f(x)=3 x^{2}+2: f(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{n}=\lim _{h \rightarrow 0} \frac{3(x+h)^{2}+2-\left(3 x^{2}+2\right)}{h}= \\
& =\lim _{h \rightarrow 0} \frac{3\left(x^{2}+2 x h+h^{2}\right)+2-3 x^{2}-x}{n}=\lim _{h \rightarrow 0} \frac{6 x h+3 h^{2}}{n}= \\
& =\lim _{h \rightarrow 0} \frac{h(6 x+3 h)}{h}=\frac{6 x}{=} \\
f(x)=\frac{1}{1-x}: f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\frac{1}{1-(x+h)}-\frac{1}{1-x}}{h}=\lim _{h \rightarrow 0} \frac{1}{h} \frac{(1-x)-(1-(x+h))}{(1-(x+n))(1-x)}= \\
& =\lim _{h \rightarrow 0} \frac{1}{4} \frac{x-x-1+x+k}{(1-(x+h)(1-x)}=\lim _{h \rightarrow 0} \frac{1}{(1-(x+h))(1-x)}= \\
& =\frac{1}{(1-x)^{2}}
\end{aligned}
$$

$f|x|=\sqrt{x}$: did in clues (hist: use conjugate)
9. Consider graph of $f(x)$ you see below, and find the sign of the indicated quantity, if it exists. If it does not exist, please say so.

$$
\begin{aligned}
& f(0)=-2<0 \\
& f^{\prime}(0) \quad \text { uncut. } \\
& f(-2)=2 \\
& f^{\prime}(-2)=0 \\
& f(2)=0 \\
& f^{\prime}(2)>0
\end{aligned}
$$

10. Consider the function whose graph you see below, and find a number $x=c$ such that

a) f is not continuous at $x=a \quad$ at $\quad x=-1$
b) f is continuous but not differentiable at $x=b \quad$ at $x=1$
c) f^{\prime} is positive at $x=c \quad$ at $x=0$ or $y=-0.5$
d) f^{\prime} is negative at $x=d$ af $x=-3$ or $x=0.5$
e) f^{\prime} is zero at $x=e \quad$ at $\delta=0$
f) f^{\prime} does not exist at $x=f$ at $x=-\mid$ and $x=1$
11. Please find the derivative for each of the following functions (do not simplify unless you think it is helpful). $f(x)=\pi^{2}+x^{2}+\sin (x)+\sqrt{x}$

$$
f^{\prime}(x)=\theta+2 x+\cos (x)+\frac{1}{2} x^{-1 / 2}
$$

$$
f(x)=x^{2}\left(x^{4}-2 x\right)=x^{6}-2 x^{3} \Rightarrow f(\mid x)=6 x^{5}-6 x^{2}
$$

$$
f(x)=x^{2}\left(x^{3}-\frac{1}{x}\right)=x^{5}-x \Rightarrow f^{\prime}(x)=\sqrt{x^{4}}-1
$$

$$
f(x)=3 x^{5}-2 x^{3}+5 x-\sqrt{2} \quad=f(\mid x)=1 \sqrt{x^{4}}-6 x^{2}+5-0
$$

$$
\begin{aligned}
& f(x)=\frac{x^{4}-2 x+3}{x^{2}}=x^{2}-\frac{2}{x}+\frac{3}{x^{2}} \Rightarrow f^{\prime}(x)=2 x+2 x^{-2}-6 x^{-3} \\
& f(x)=x^{3} \sin (x) \quad f^{\prime}(x)=\underbrace{2 x^{2}} \sin (x)+x^{3} \cos (x) \\
& f(x)=\sin (x) \cos (x) \quad f^{\prime}(x)=\cos (x) \cos (x)+\sin (x)(-\sin (x)) \\
& =\cos ^{2}(x)-\sin ^{2}(x) \\
& f(x)=\sin ^{2}(x)=\sin (x) \cdot \sin (x) \Rightarrow f(x)=\underline{\cos (x)} \sin (x)+\sin (x) \underline{c o s}(x)=2 \cos (x) \sin (x) \\
& f(x)=\frac{\sin (x)}{x^{4}-3} \quad f^{\prime}(x)=\frac{\cos (x)\left(x^{4}-3\right)-\sin (x) \cdot 4 x^{3}}{\left(x^{4}-3\right)^{2}} \\
& f(x)=\frac{\sec (x)}{x^{4}} \quad f^{\prime}(x)=\frac{\sec (x) \tan (x) x^{4}-\sec (x) 4 x^{3}}{x^{8}} \text { becaure }(\sec)^{\prime}=\left(\left(^{1} \cos \right)^{\prime}=\frac{0 \cdot \cos -1 \cdot(-x \sin)}{\cos ^{2}}=\right. \\
& =\sin / \cos ^{2}=\mathrm{sec} \cdot \tan \\
& \left.f(x)=\tan (x) \sqrt{x} \quad f^{\prime}(x)=\sec ^{2}(x) \sqrt{x}+\tan (x) \frac{1}{2} x^{-1 / 2} \quad \text { becaune }(\tan)\right)^{\prime}=\left(\frac{\sin ^{2}}{\cos ^{\prime}}\right)^{\prime}=\frac{\cos ^{2}+\sin ^{2}}{\cos ^{2}}=\sec ^{2} \\
& f(x)=\pi^{2} \sin \left(\frac{\pi}{6}\right) \quad f^{\prime}(x)=0! \\
& f(x)=\frac{x^{4}-2 x+3}{x^{2}-4 x} \quad f^{\prime}(x)=\frac{\left(4 x^{3}-2\right)\left(x^{2}-4 x\right)-\left(x^{4}-2 x+3\right)(2 x-4)}{\left(x^{2}-4 x\right)^{2}} \\
& f(x)=\frac{x^{2}}{x^{2}-1} \quad f^{\prime}(x)=\frac{2 x\left(x^{2}-1\right)-x^{2}(2 x)}{\left(x^{2}-1\right)^{2}} \\
& f(x)=\frac{x \sin (x)}{x-3} \\
& f^{\prime}(x)=\frac{(1-\sin (x)+x \cos (x))(x-3)-x \sin (x) \cdot 1}{(x-3)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\frac{\bar{x}^{2} \cos (x)}{(1-2 x) \sin (x)} \\
& f^{\prime}(x)=\frac{\left.\left(2 x \cos (x)+x^{2}(-\sin (x))\right)(1-2 x) \sin (x)-x^{2} \cos (x)[(-2) \sin (x)-(1-2 x+\cos)]\right]}{(1-2 x)^{2} \sin ^{2}(x)} \\
& f(x)=\tan (x) \text {, find } f^{\prime \prime}(x) \quad f^{\prime}(x)=\sec ^{2}(x)=\sec (x) \sec (x) \text { w } \\
& f(x)=x \cos (x), \text { find } f^{\prime \prime \prime}(x)
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}=1 \cdot \cos (x)-x \sin (x), \quad f^{\prime \prime}=-\sin (x)-(\mid \sin (x)+x \cos (x))=-2 \sin (x)-x \cos (x) \\
& f(x)=3 x^{5}-2 x^{3}+5 x-1, \text { find } f^{(7)}(x) \\
& f^{\prime \prime 4}=-2 \cos (x)-(l \cdot \cos (x)-x \sin (x))=-3 \cos (x)+x \sin (x) \\
& f(7)(x)=0
\end{aligned}
$$

11. Find the equation of the tangent line to the function at the given point:
a) $f(x)=x^{2}-x+1$, at $\mathrm{x}=0$

$$
\begin{aligned}
& f^{\prime}(x)=2 x-1 \Rightarrow f(\mid 0)=-1 \Rightarrow \text { slope }=-1 \\
& f(0)=1 \Rightarrow y-1=-1 x(x-0)
\end{aligned}
$$

b) $f(x)=x^{3}-2 x$, at $\mathrm{x}=1$

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-2 \Rightarrow f((1)=3 \sim 2=1 \text { so slope } \\
& f(1)=-1
\end{aligned}
$$

12. For the function displayed below, find the following limits:

a) $\lim _{x \rightarrow \infty} f(x)=2$
b) $\lim _{x \rightarrow-\infty} f(x)=2$
c) $\lim _{x \rightarrow 5^{+}} f(x)=+\infty$
d) $\lim _{x \rightarrow-5^{+}} f(x)=\sim \infty$
13. Suppose the function $f(x)=\frac{x^{4}-2 x+3}{x^{2}}$ indicates the position of a particle. $f(t)=f^{2}-\frac{l}{f}+\frac{3}{f^{2}}$
a) Find the velocity after 10 seconds

$$
V(t)=f^{\prime}(t)=2 t+\frac{2}{t^{2}}-\frac{6}{t^{3}} \Rightarrow f(10)=20+\frac{2}{100}-\frac{6}{1000}=20.0196
$$

b) Find the acceleration after 10 seconds

$$
\begin{aligned}
& a(x)=v^{l}(t)=2-\frac{4}{f^{3}}+\frac{18}{f^{4}} \\
& a(10)=2-\frac{4}{1000}+\frac{18}{10000}
\end{aligned}
$$

c) When is the particle at rest (other than for $t=0$)

$$
\begin{aligned}
& \text { when } v(t)=0: v(t)=2 t+\frac{2}{t^{2}}-\frac{6}{t^{3}}=0=0 \quad 1 \cdot f^{3} \\
& \text { Maple says: } f=-1.452 \quad=2 t^{4}+2 t-6=0 \Rightarrow\left(\begin{array}{l}
3 \\
1
\end{array}\right.
\end{aligned}
$$

d) When is the particle moving forward and when backward

$$
\begin{array}{r}
\text { for aced if } v(t)>0 \text { and bachavead if } v(t)=O \\
\text { hor comphiculed to hides out by hand! }
\end{array}
$$

14. Find the following limits at infinity:

$$
\begin{array}{ll}
\lim _{x \rightarrow \infty} \frac{2 x+3 x^{4}}{4 x^{3}-2 x^{2}+x-1}=\infty & \lim _{x \rightarrow-\infty} \frac{x-x^{5}}{x^{3}-x^{2}+x-1}=-\infty \\
\lim _{x \rightarrow-\infty} \frac{4 x^{3}-2 x^{2}+x-1}{2 x-3 x^{4}}=0 & \lim _{x \rightarrow-\infty} \frac{x^{3}-x^{2}+x-1}{x-3 x^{3}}=\sim 3 \\
\lim _{x \rightarrow-\infty} \frac{(3 x+4)(x-1)}{(2 x+7)(4 x+2)}=\frac{7}{8} & \lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}-1}}{x}=\lim _{x \rightarrow \infty} \frac{x \sqrt{1-\frac{1}{x^{2}}}}{x}=1
\end{array}
$$

