$\xrightarrow{\text { Panel } 1}$
Last + Vive.
Chain Rule: $\left.\frac{d}{d x} f(g \mid x)\right)=f^{\prime}(\underline{q(x)}) \cdot\binom{\text { innme }}{\text { hematin }}^{\prime}$

$$
f(x)=\sin \left(x^{2}\right), f^{\prime}=\cos \left(x^{\prime}\right) 2 x
$$

Rel and achaclule Exhema:

Panel 2
Derivation with Chain Recti. Find derivatives of:
a)

$$
\begin{aligned}
& \left.f(x)=\left(3-2 x-5 x^{2}\right)\right)^{10} \\
& f^{\prime}(x)=10\left(3-2 x-5 x^{2}\right)^{9} \cdot(-2-10 x)
\end{aligned}
$$

5) $f(x)=\sqrt{1-2 x}=(1-2 x)^{1 / 2}$

$$
f^{\prime}(x)=\frac{1}{2}(1-2 x)^{-1_{2}} \cdot(-2)
$$

Panel 3
c) $f(x)=\frac{15}{\left(3 x^{2}-5\right)^{5}}=15 \cdot\left(3 x^{2}-5\right)^{-5}$

$$
f^{\prime}(x)=15(-r)\left(7 x^{8}-r\right)^{-6}(6 x)
$$

d) $f(x)=\sin \left(x^{2}\right)$

$$
f^{\prime}(x)=\cos \left(x^{2}\right) \cdot(2 x)
$$

e) $f(x)=\sin ^{3}\left(x^{2}\right)=\frac{f\left(\sin \left(x^{2}\right)^{8}\right.}{2}$

$$
f^{\prime}(x)=3\left(\sin \left(x^{2}\right)_{3}\right)^{2} \cdot \cos \left(x^{2}\right) \cdot(x
$$

Pancl4
f) $\left.f(x)=\sqrt{\frac{x+1}{x-1}}=\binom{x+1}{x-1}\right)^{1 / 2}$

$$
f^{\prime}\left(M=\frac{1}{2}\left(\frac{x+1}{x-1}\right)^{-1 / 2} \cdot\left(\frac{(1)(x-1)-(x+1)(1)}{(x-1)^{2}}\right)\right.
$$

g) $f(x)=\sin \left(\sqrt{x^{3}\left(x^{2}-3\right)^{2}}\right)$

$$
\left.f^{\prime}(x)=\cos \left(\sqrt{x^{3}\left(\sqrt{\left.x^{2}-3\right)^{2}}\right.}\right) \cdot \frac{1}{2}\left(x^{3}\left(x^{2}-1\right)^{2}\right)^{-1 / 2} \cdot\left(\left(2 x^{2}\right)\left(x^{2}-2\right)^{2}+x^{2}\right) d\right)
$$

h) $f(x)=\sqrt{\sqrt{x^{2}-1}} \frac{2\left(x^{2}-3\right)^{\prime} \cdot 2 x}{x}$

$$
\left.f^{\prime}(x)=\left(\frac{1}{2}\left(x^{-1}-1\right)^{-1 / 2}\right)\left(\tan \left(x^{2}\right)\right)+\left(\sqrt{x^{2}-1}\right)\right) \cdot\left(\sec ^{2}\left(x^{3}\right) \cdot 3 x^{2}\right)
$$

Panel 5

$$
\begin{aligned}
& \text { i) } f(x)=\sqrt{\frac{\left.\cos \left(x^{2}\right)\right)}{\sin (1-x)}} \\
& \left.f^{\prime}(x)=\frac{1}{2}\left(\frac{\cos \left(x^{2}\right)}{\sin (1-x)}\right)^{-1 / 2} \cdot \frac{\left(-\sin \left(x^{2}\right) \cdot 2 x\right)(\sin (1-x))-\left(\cos \left(x^{2}\right)\right)(\cos ((-x))(1)}{(\sin (1-x))^{2}}\right) \\
& \text { j) } f(x)=\frac{(2 x-1)^{2}}{(1-5 x)^{3}} \\
& f^{\prime}(x)=\frac{\left(2((x-1) \cdot 2) \cdot\left((1-5 x)^{3}\right)-\left((2 x-1)^{2}\right) \cdot(3((1-5 x) \cdot(-5))\right.}{\left((1-5 x)^{3}\right)^{2}}
\end{aligned}
$$

Panel 6
k) $\left.\left.f(x) \sqrt{\frac{x-7}{1-2 x}}\right) \cdot \operatorname{tgn}\left(x^{3}\right) \cdot \sin (1-x)\right)$
(1) Poolut

Panel 7
Quif \#6
Nane \qquad
(1) Find the derivatives of the follawing functious:
a) $f(x)=\left(x^{4}-7 x^{2}\right)^{5}$
6) $f(x)=\sin \left(7-4 x^{2}\right)$
c) $f(x)=\frac{(x-7)^{2}}{(6-9 x)^{3}}$

Panel 8

$$
\text { d) } f(x)=x^{5} \sin \left((3 x+2)^{4}\right)
$$

e) $f(x)=\cos \left(\frac{x+5}{(7-x)^{3}}\right)$

