

Differentiation Rules (2): Constant Rule
$\frac{dx}{d} c \cdot d(x) = c \cdot \frac{dx}{d} d(x)$
d dx C 2 0
Ex {(x)= (1/x)=5. (x=10x
g (x)=-3 <>x g (x)=6x
L(x)= q \\ x^2 = q x \\ h(x) = q \\ 2 x^{-1/3}
le (X) = 23 (countent) h(X) = 0
4

line is h		mqui
=> slupe o	1 femans, is zoro! y 1 = 0	
У	(= 4x ² -12x =0 4x(x ² -3)=0	
=) X = 0	(x = \sqrt{3} , x = -\sqrt{3}	

Panel 8

Differentiation Rules (4) Product

$$\frac{d}{dx} \left(f(x) \cdot g(x) \right) = \frac{d}{dx} \left(f(x) \cdot g(x) \right)$$

Pudent rule is more complicated:

 $\frac{d}{dx} \left(f(x) \cdot g(x) \right) = \frac{f(x)}{dx} g(x) + \frac{f(x)}{dx} g(x)$

Ex. $\frac{d}{dx} \left(f(x) \cdot g(x) \right) = \frac{f(x)}{dx} g(x) + \frac{f(x)}{dx} g(x)$

Ex. $\frac{d}{dx} \left(f(x) \cdot g(x) \right) = \frac{f(x)}{dx} g(x) + \frac{f(x)}{dx} g(x)$

Ex. $\frac{d}{dx} \left(f(x) \cdot g(x) \right) = \frac{f(x)}{dx} g(x) + \frac{f(x)}{dx} g(x)$

Ex. $\frac{d}{dx} \left(f(x) \cdot g(x) \right) = \frac{f(x)}{dx} g(x) + \frac{f(x)}{dx} g(x)$

Ex. $\frac{d}{dx} \left(f(x) \cdot g(x) \right) = \frac{f(x)}{dx} g(x) + \frac{f(x)}{dx} g(x)$

Ex. $\frac{d}{dx} \left(f(x) \cdot g(x) \right) = \frac{f(x)}{dx} g(x) + \frac{f(x)}{dx} g(x)$

Ex. $\frac{d}{dx} \left(f(x) \cdot g(x) \right) = \frac{f(x)}{dx} g(x) + \frac{f(x)}{dx} g(x)$

Ex. $\frac{d}{dx} \left(f(x) \cdot g(x) \right) = \frac{f(x)}{dx} g(x) + \frac{f(x)}{dx} g(x)$

Ex. $\frac{d}{dx} \left(f(x) \cdot g(x) \right) = \frac{f(x)}{dx} g(x) + \frac{f(x)}{dx} g(x)$

Ex. $\frac{d}{dx} \left(f(x) \cdot g(x) \right) = \frac{f(x)}{dx} g(x)$

Ex. $\frac{d}{dx} \left(f(x) \cdot g(x) \right) = \frac{f(x)}{dx} g(x)$

Ex. $\frac{d}{dx} \left(f(x) \cdot g(x) \right) = \frac{f(x)}{dx} g(x)$

Ex. $\frac{d}{dx} \left(f(x) \cdot g(x) \right) = \frac{f(x)}{dx} g(x)$

Ex. $\frac{d}{dx} \left(f(x) \cdot g(x) \right) = \frac{f(x)}{dx} g(x)$

Ex. $\frac{d}{dx} \left(f(x) \cdot g(x) \right) = \frac{f(x)}{dx} g(x)$

Ex. $\frac{d}{dx} \left(f(x) \cdot g(x) \right) = \frac{f(x)}{dx} g(x)$

Ex. $\frac{d}{dx} \left(f(x) \cdot g(x) \right) = \frac{f(x)}{dx} g(x)$

Ex. $\frac{d}{dx} \left(f(x) \cdot g(x) \right) = \frac{f(x)}{dx} g(x)$

Ex. $\frac{d}{dx} \left(f(x) \cdot g(x) \right) = \frac{f(x)}{dx} g(x)$

Ex. $\frac{d}{dx} \left(f(x) \cdot g(x) \right) = \frac{f(x)}{dx} g(x)$

Ex. $\frac{d}{dx} \left(f(x) \cdot g(x) \right) = \frac{f(x)}{dx} g(x)$

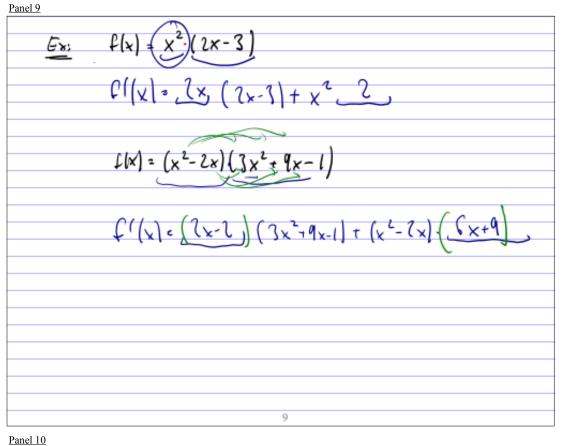
Ex. $\frac{d}{dx} \left(f(x) \cdot g(x) \right) = \frac{f(x)}{dx} g(x)$

Ex. $\frac{d}{dx} \left(f(x) \cdot g(x) \right) = \frac{f(x)}{dx} g(x)$

Ex. $\frac{d}{dx} \left(f(x) \cdot g(x) \right) = \frac{f(x)}{dx} g(x)$

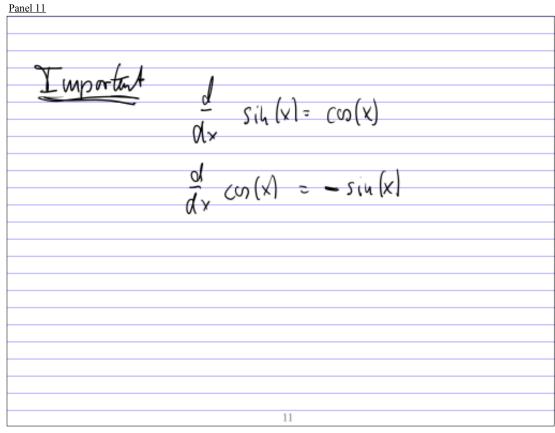
Ex. $\frac{d}{dx} \left(f(x) \cdot g(x) \right) = \frac{f(x)}{dx} g(x)$

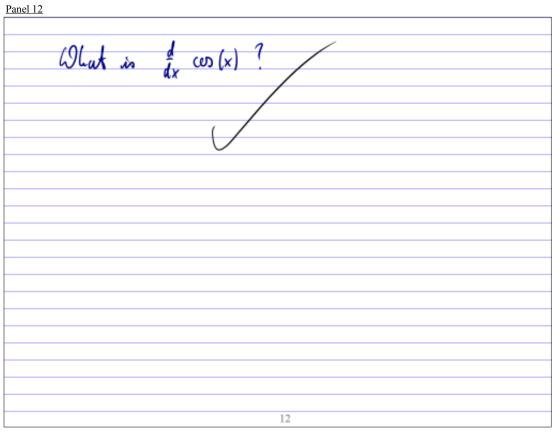
Ex. $\frac{d}{dx} \left(f(x) \cdot g(x) \right) = \frac{f(x)}{dx} g(x)$

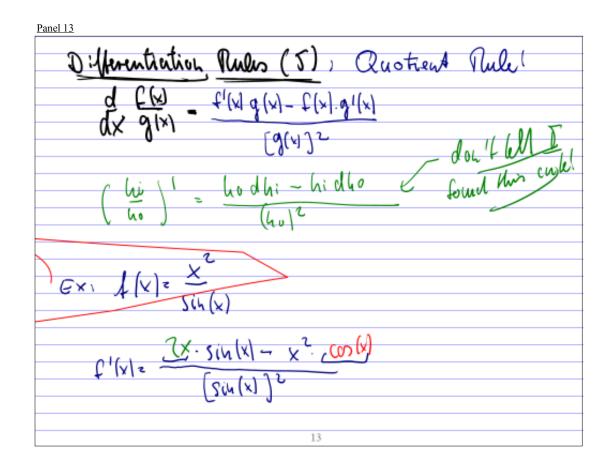

Ex. $\frac{d}{dx} \left(f(x) \cdot g(x) \right) = \frac{f(x)}{dx} g(x)$

Ex. $\frac{d}{dx} \left(f(x) \cdot g(x) \right) = \frac{f(x)}{dx} g(x)$

Ex. $\frac{d}{dx} \left(f(x) \cdot g(x) \right) = \frac{f(x)}{dx} g(x)$


Ex. $\frac{d}{dx} \left(f(x) \cdot g(x) \right) = \frac{f(x)}{dx} g(x)$


Ex. $\frac{d}{dx} \left(f(x) \cdot g(x) \right) = \frac{f(x)}{dx}$



Famel 10

GE $f(x) = x^2 \cdot \sin(x)$ $f(x) = \frac{2x}{2x} \cdot \sin(x) + x^2 \cdot \cos(x)$ $f(x) = \frac{2x}{2x} \cdot \sin(x) + x^2 \cdot \cos(x)$ $f(x) = \frac{2x}{2x} \cdot \sin(x) + x^2 \cdot \cos(x)$ $f(x) = \frac{2x}{2x} \cdot \sin(x)$ $f(x) = x^2 \cdot \sin($

