Math 1303: Practice Exam 1

This practice exam has many more questions that the real exam. The real exam will have 10 questions (some multi-part) of the type covered in this practice exam and in the homework and quizzes. If you have any questions, please email me.

1. Find the domain of the following functions:
a. $f(x)=\frac{x}{x^{2}-6 x+5}$
b. $f(x)=\frac{x-6}{\sqrt{2 x-3}}$
c. $f(x)=\log _{2}(x)$
d. $k(t)=\frac{2 x^{2}-3 x}{e^{x}}$
e. $f(x)=\log _{2}(x-1)$
2. Suppose $f(x)=2 x^{2}-3$ and $g(x)=\frac{1}{x^{2}-1}$. Find the following quantities:
a. $\left(f^{\circ} g\right)(x)$
b) $\left(g^{\circ} f\right)(x)$
c) $\left(f^{\circ} f\right)(x)$
d) $\frac{f(x)}{g(x)}$
3. Suppose $f(x)=2 x^{2}-3$. Compute (-2), $f(3 t)$, and $\frac{f(x+h)-f(x)}{h}$ (simplify your answer). Do the same for the function $f(x)=-3 x+6$.
4. Let $h(x)=\left\{\begin{array}{ll}1-x & \text { if } x \geq 0 \\ 3 x-2 & \text { if } x<0\end{array}\right.$ and $g(x)=\left\{\begin{array}{cl}x^{2} & \text { if } x<0 \\ 2-2 x & \text { if } 0 \leq x \leq 1 \\ 2-x^{2} & \text { if } 1<x\end{array}\right.$
a. Find $h(-2)$ and $g(-2)$
b. Find $h(0)$ and $g(1)$
c. Graph the functions in two separate coordinate systems.
5. Decide whether the following functions are even, odd, or neither:
a) $f(x)=2 x^{4}-x^{2}+1$
b) $g(x)=\frac{x}{x^{2}-1}$
b) $h(x)=\left(x^{2}-1\right)\left(x^{3}+1\right)$
d) $k(x)=3 x e^{x^{2}}$
e)

6. Find the equation of a line satisfying the given conditions
a. through $(-1,2)$ and $(2,3)$
b) through $(3,4)$ and $(-2,4)$
b. through the point $(3,1)$ parallel to the line $6 x-3 y=6$
c. through the point $(2,1)$ perpendicular to the line $y=3 x-1$
d. with x -intercept 2 and y -intercept 4
7. Find the vertex, x -intercepts, y -intercepts and graphs for
a) $y=2 x^{2}-4 x+1$
b) $y=x^{2}-7 x-18$
c) $y=-2 x^{2}-x-1$
8. Solve the systems of equations, if possible

$$
\begin{array}{cc}
2 x-y=6 & 8 x-4 y=7 \\
3 x+2 y=5 & y=2 x-4 \\
2 x-y=3 & \\
-4 x+2 y=8 &
\end{array}
$$

9. Suppose a revenue function is $R(q)=200 q$ while the cost function is $C(q)=250+100 q$. Find the fixed cost and the break-even point(s).
10. If the supply and demand functions of a product are $120 p-q-240=0$ and $100 p-q=1200$, respectively, find the equilibrium price.
11. Suppose a demand and supply equation are, respectively, $5 p-q=10$ and $2 p^{2}-q=8$. Find the equilibrium price (there may be more than one)
12. The demand function for a product is $p(q)=200-2 q$ where p is the price in dollars per unit when q units are demanded. Find the level of production that maximizes the manufacturer's revenue.
13. A manufacturer sells all units produced. What is the break-even point if the product is sold at $\$ 16$ per unit, fixed cost is $\$ 10,000$, and variable cost is $y_{v c}=8 q$, where q is the number of units produced.
14. A manufacturer sells a product at $\$ 8.35$ per unit, selling all produced. The fixed cost is $\$ 2,116$ and the variable cost is $\$ 7.20$ per unit. At what level of production will the break-even point occur?
15. Suppose you invest $\$ 250$ at 4% interest, compounded monthly. How much money will you have after 3 years? How much would you have if there was no compounding at all?
16. Suppose you want to invest $\$ 5,000$ at 5% interest for 10 years. Bank A offers quarterly compounding, Bank A compounds weekly. Where would you invest your money and how much money would the difference be between bank A and B after 10 years?
17. Evaluate the following expressions:
a) $\log _{5}(125)$
b) $\log _{3}\left(\frac{1}{81}\right)$ c) $\log _{4}(2)$
d) $\log _{\frac{1}{3}}(9)$
18. Solve for x :
a) $\log _{2}(x)=6$
b) $\log (6 x-2)=2$
c) $3^{4 x}=9^{x+1}$
d) $4^{3-x}=\frac{1}{16}$
e) $e^{3 x}=14$
19. The population of a fast-growing town in the south is modeled by the equation $P(t)=7,000 e^{0.09 \cdot t}$ where t is the number of years past 1990.
a. What was the population of the town in 1990 ?
b. What will the population be in 2030 ?
c. When, approximately, will the population double in size?
20. A radioactive substance decays according to $N(t)=10 e^{-0.14 t}$ where N is the number of mg present after t hours. How much of the substance s initially present? How much is present after 5 hours? After how many hours is 0.1 mg remaining?
21. If I invest $\$ 2,500$ at 6.5% interest, compounded monthly, for how many years should I invest it to reach my goal of having \$20,000?
22. Consider the following graphs of functions. Which graph belongs to which function?

a. $f(x)=e^{x}$
b. $g(x)=x-1$
c. $h(x)=3^{-x}-1$
d. $k(x)=2-2 x$

Also know the graphs of the logarithm functions!

