Math 1303 Practice Exam 2
Evaluate the following limits:

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{x-3}{x^{2}+1}=\frac{0-3}{0+1}=-3 / 1=-3 \\
& \lim _{x \rightarrow 2} \frac{2-x}{x^{2}}=\frac{2-2}{2^{2}}=\frac{0}{4}=\underline{0} \\
& \lim _{x \rightarrow 1} \frac{x-5 x+6}{x-2}=\frac{1-5+6}{1-2}=\frac{2}{-1}=-2 \\
& \lim _{x \rightarrow 2} \frac{x-5 x+6}{x-2}\left(=\frac{0}{0}\right)=\lim _{x \rightarrow 2} \frac{(x-6)(x-3)}{x 2}=2-3=-1 \\
& \lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}\left(=\frac{0}{0}\right)=\lim _{x \rightarrow 3} \frac{(x+3)(x-3)}{x-3}=6 \\
& \lim _{x \rightarrow 4} \frac{x^{2}-16}{x^{2}-x-12}=\left(\frac{0}{0}\right)=\lim _{x \rightarrow 4} \frac{(x-4)(x+4)}{(x+3)(x-4)}=\frac{8}{\frac{8}{2}} \\
& \lim _{x \rightarrow \infty} \frac{2-x}{x^{2}+9}=O \text { (Sotrom power wives) } \\
& \lim _{x \rightarrow \infty} \frac{3 x^{2}-2 x+7}{3-2 x^{2}}=-\frac{3}{2} \text { (even vice) } \\
& \lim _{x \rightarrow-\infty} \frac{2+3 x^{3}}{x^{2}+x+1} \approx \frac{3 x^{3}}{x^{2}}=\frac{3 x}{1} \rightarrow \infty \text { (lop-power win) }
\end{aligned}
$$

Let $f(x)=\left\{\begin{array}{ll}x^{2} & \text { for } \quad x>0 \\ 1 & \text { for } \quad x=0 \\ 3 x-1 & \text { for } \quad x<0\end{array} \quad\right.$ Find the limits

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} 3 x-1=-\infty \\
& \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}|3 x-1|=-1 \\
& \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} x^{2}=0
\end{aligned}
$$

$\lim _{x \rightarrow 0} f(x)=$ d.n.e. because left + Nytht handed limits one dilhont
Let $f(x)= \begin{cases}2 x-5 & , x<2 \\ -x & , x \geq 2\end{cases}$
Is $f(x)$ is continuous at $x=0$? At 0 have is no problem, $f(x)=2 x-5$ for x clone lo kero. So cont. at 0
How about at $\mathrm{x}=2$?

$$
\left.\begin{array}{l}
f(2)=-2, \lim _{x \rightarrow 2^{+}} f(x)=-2 \\
\lim _{x \rightarrow 2^{-}} f(x)=2 \cdot 2-5=-1
\end{array}\right) \lim _{x \rightarrow 2} f(x) \text { d.u.e. } \Rightarrow \text { Nut cont. al } x=2
$$

Is $f(x)$ is continuous at $x=0$? At zero of is cerlam by cowliwury
How about at $\mathrm{x}=3$?

$$
\begin{aligned}
& \text { owaboutat }=3 \text { ? } \\
& f(3) \cdot 6, \lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}=\lim _{x \rightarrow 3} \frac{(x-3)(x+3)}{(x-3)}=6 \text { and therefore } \lim _{x \rightarrow 3} f(x), f(3) \\
& \text { so yes, cont at } x=3
\end{aligned}
$$

s. yes, cont. at $\times 3$

Using the definition of the derivative, find

$$
\begin{aligned}
& f^{\prime}(x) \text { if } f(x)=-x^{2}+5 x+2 \\
& \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{-(x+h)^{2}+5(x+h)+2-\left(-x^{2}+5 x+2\right)}{h}=\lim _{h \rightarrow 0} \frac{\left.-x^{2}-2 x h\right)-h^{2}+5 x+5\left(h+2+x^{2}-5 x-2\right.}{h} \\
&=\lim _{h \rightarrow 0} \frac{h(-2 x-h+5)}{h}=\lim _{h \rightarrow 0}-2 x-h+5=-2 x+5
\end{aligned}
$$

Then find the equation of the tangent line to $f(x)$ at $x=3$

$$
\begin{aligned}
& \text { Know: } f^{\prime}(x)=-2 x+5 \\
& \Rightarrow f^{\prime}(3)=-6+5=-1 \\
& \text { 2) teangeat line: } y=8=-1(x-3) \\
& f^{\prime}(x) \text { if } f(x)=x^{2}-6 x+3 \text {. } \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(b)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{2}-6(x+h)+3-\left(x^{2}-6 x+3\right)}{h}=\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+\left(h^{3}-6 x-6(6)+3-x^{2}+6 x-3\right.}{h} \\
& =\lim _{h \rightarrow 0} \frac{4(2 x+4-5)}{4}=\lim _{h \rightarrow 0} 2 x+h-5=2 x-5
\end{aligned}
$$

$$
f^{\prime}(x)=2 x-5 \Rightarrow f^{\prime}(2)=-1
$$

Then find the equation of the tangent to $f(x)$ at $x=2 \quad f(2)=4-12+3=-5$

$$
\Rightarrow y+5=-1(x-2)
$$

Differentiate and simplify

$$
\begin{aligned}
& y=-3 x^{5}-13 \\
& Y^{\prime}=\frac{\Gamma \Gamma_{x}^{4}}{} \\
& \Rightarrow(t)=\frac{4}{t}+\frac{t}{4}+\sqrt[5]{t^{2}}=4 t^{-1}+\frac{1}{4} t+t^{2 / 5} \\
& \Rightarrow f^{\prime}\left(t \left\lvert\,=-4 t^{-2}+\frac{1}{4} t^{\frac{2}{5}} t^{-3 / 5} .\right.\right.
\end{aligned}
$$

Consider the function $y=2 x^{3}+3 x^{2}-12 x-3$.
Identify all critical points. where $f^{\prime}(x)=0$ or d.u.e.

$$
\begin{aligned}
& \text { ty all critical points. where } f^{\prime}(x)=0 \text { or ane. } \\
& y^{\prime}=6 x^{2}+6 x-12=6\left(x^{2}+x-2\right) \cdot 6(x+2)(x-1)=0 \Rightarrow \frac{x=1}{x=-2} \text { are arilial point }
\end{aligned}
$$

State the intervals over which the graph is increasing, decreasing.

	$\sqrt{2}$		
f^{\prime}	+	-	t
1	\nearrow	\searrow	\nearrow

incerana $1(-\infty,-2)$ and $(1, \infty)$ decereming (-2.1)
Identify any or relative extrema.
$x=-2$ is rel. max
$x=1$ is rel.uis
Do the same for $y=x^{3}-9 x^{2}+15 x-4$.

$$
y^{\prime}=3 x^{2}-18 x+15
$$

Identify all critical points.

$$
\begin{array}{r}
f^{\prime}(x)^{2} J x^{2}-18 x+15=3\left(x^{2}-6 x+5\right)=3(x-1)(x-5)=0 \\
\Rightarrow x=1_{1} x=f \text { are cyclical! }=0
\end{array}
$$

State the intervals over which the graph is increasing, decreasing.

Identify any absolute or relative extrema.

$$
x=1 \text { is } \operatorname{mile}, x=5 \text { io } \mathrm{um}
$$

A supermarket manager wants to establish an inventory policy for frozen orange juice. He finds that his inventory costs each month are

$$
C(x)=\frac{360000}{x}+4 x \text { dollars, where } \mathrm{x} \text { is the number of cases of orange juice. }
$$

How many cases should he order each month to minimize his inventory costs? Procluce 300 cares, singe

$$
\begin{aligned}
& C^{\prime}(x)=-360000 x^{-2}+4=0 \\
& 4 x^{2}=360000 \\
& x^{2}=90000 \\
& \Rightarrow x^{2}=300
\end{aligned} \quad \begin{array}{c|c|c|c}
-1 & + & - & + \\
\hline & &
\end{array} \quad \Rightarrow x=300 \text { in a }
$$

The analysis of the daily output of a factory assembly line shows that about

$$
H(t)=60 t+t^{2}-t^{3} \text { units are produced after } \mathrm{t} \text { hours of work. }
$$

The factory currently operates 4 hours a day but management is thinking about operating it a little longer. Would the output increase or decrease?

$$
\begin{array}{ll}
H^{\prime}(t)=60+2 t-3 f^{2} & \Rightarrow H^{\prime}(t)>0 \text { for } f=4 \quad \text { opevale longer the } \\
\Rightarrow H^{\prime} / 4 \mid=60+8-32>0 & \Rightarrow H \text { is increasing when } f=4 \Rightarrow \text { nous and No } \\
\text { prochution increereo }
\end{array}
$$

The Consumer Price Index (CPI) of an economy is described by the function

$$
I(t)=200+3 t-0.4 t^{2}, \text { where } \mathrm{t} \text { is time in years and } \mathrm{t}=0 \text { corresponds to the year } 2004 .
$$

Will the CPI increase in 2010 ?

$$
\begin{aligned}
& I^{\prime}(t)=3-0.8 t \text {. At } 2010, t=6 \cap \Sigma^{\prime}(6)=3-4.8<0- \\
& \Rightarrow I(t) \text { will demean! }
\end{aligned}
$$

Suppose the cost function of making q throw rugs is

$$
C=4 q^{2}-2 \sqrt{q^{3}}+4400
$$

Find the marginal cost function

$$
C^{\prime}(q)=8 q-\frac{2}{3} g^{-2 / 3} \text { is marginal cert }
$$

as well as the marginal cost for $\mathrm{q}=3$.

$$
C^{\prime}(q=3)=8 \cdot 3-\frac{2}{3} \frac{1}{9}=24-\frac{2}{22}
$$

What does that mean? The cost for poolualnig one wore

$$
\text { by abut } 239^{2}
$$

Find the fixed cost.

$$
C(0)=4400 \text { is fixed cost }
$$

What does that mean?

Suppose the cost for producing q items is

$$
C(q)=6 q^{3}-320 q+1700
$$

Find the marginal cost function

$$
C^{\prime}(q)=18 q^{2}-320
$$

as well as the marginal cost for $\mathrm{q}=2$.

$$
\begin{aligned}
C^{\prime}(2) & =18 \cdot 4-320 \quad \text { Cost fer increase } \\
& =-248 \Rightarrow \text { will oo down! }
\end{aligned}
$$

What does that mean?
Cont fer increased poodrcius level will go doorn!

Find the fixed cost.

$$
C C O=1200
$$

What does that mean?
Means the cost for producing no mitt is 1200 .

