Math 1303 Practice Exam 2

Evaluate the following limits:

$$
\begin{array}{lll}
\lim _{x \rightarrow 0} \frac{x-3}{x^{2}+1} & \lim _{x \rightarrow 2} \frac{2-x}{x^{2}} & \lim _{x \rightarrow 1} \frac{x-5 x+6}{x-2} \\
\lim _{x \rightarrow 2} \frac{x-5 x+6}{x-2} & \lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3} & \lim _{x \rightarrow 4} \frac{x^{2}-16}{x^{2}-x-12} \\
\lim _{x \rightarrow \infty} \frac{2-x}{x^{2}+9} & \lim _{x \rightarrow \infty} \frac{3 x^{2}-2 x+7}{3-2 x^{2}} & \lim _{x \rightarrow-\infty} \frac{2+3 x^{3}}{x^{2}+x+1}
\end{array}
$$

Let $f(x)=\left\{\begin{array}{l}x^{2} \quad \text { for } \quad x>0 \\ 1\end{array} \quad\right.$ for $\quad x=0 \quad$ Find the limits $\lim _{x \rightarrow-\infty} f(x), \lim _{x \rightarrow 0^{-}} f(x), \lim _{x \rightarrow 0^{+}} f(x), \lim _{x \rightarrow 0} f(x)$
Let $f(x)=\left\{\begin{array}{ll}2 x-5 & , x<2 \\ -x & , x \geq 2\end{array}\right.$ Is $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=0$? How about at $\mathrm{x}=2$?
Let $f(x)=\left\{\begin{array}{cl}\frac{x^{2}-9}{x-3} & \text { if } x \neq 3 \\ 6 & \text { if } x=3\end{array}\right.$ Is $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=0$? How about at $\mathrm{x}=3$?

Using the definition of the derivative, find
$f^{\prime}(x)$ if $f(x)=-x^{2}+5 x+2$. Then find the equation of the tangent line to $\mathrm{f}(\mathrm{x})$ at $\mathrm{x}=3$
$f^{\prime}(x)$ if $f(x)=x^{2}-6 x+3$. Then find the equation of the tangent to $\mathrm{f}(\mathrm{x})$ at $\mathrm{x}=2$

Differentiate and simplify

$$
\begin{aligned}
& y=-3 x^{5}-13 \\
& f(t)=\frac{4}{t}+\frac{t}{4}+\sqrt[5]{t^{2}}
\end{aligned}
$$

More to come

Consider the function $y=2 x^{3}+3 x^{2}-12 x-3$. Identify all critical points. State the intervals over which the graph is increasing, decreasing. Identify any absolute or relative extrema. Do the same for $y=x^{3}-9 x^{2}+15 x-4$.

A supermarket manager wants to establish an inventory policy for frozen orange juice. He finds that his inventory costs each month are $C(x)=\frac{360000}{x}+4 x$ dollars, where x is the number of cases of orange juice. How many cases should he order each month to minimize his inventory costs?

The analysis of the daily output of a factory assembly line shows that about $H(t)=60 t+t^{2}-t^{3}$ units are produced after t hours of work. The factory currently operates 4 hours a day but management is thinking about operating it a little longer. Would the output increase or decrease?

The Consumer Price Index (CPI) of an economy is described by the function $I(t)=200+3 t-0.4 t^{2}$, where t is time in years and $\mathrm{t}=0$ corresponds to the year 2004. Will the CPI increase in 2010?

Suppose the cost function of making q throw rugs is $C=4 q^{2}-2 \sqrt{q^{3}}+4400$. Find the marginal cost function as well as the marginal cost for $\mathrm{q}=3$. What does that mean? Find the fixed cost. What does that mean?

Suppose the cost for producing q items is $C(q)=6 q^{3}-320 q+1700$. Find the marginal cost function as well as the marginal cost for $\mathrm{q}=2$. What does that mean? Find the fixed cost. What does that mean?

