Panel 1
Last time (A long time apo): we computed

$$
P(z \geqslant 0.75) \text { for } t=N(0,1)
$$

$P(6 \varepsilon x \varepsilon \Omega 2)=$ for $x=N(8,4)$
$P(x \leqslant 12)-P(x \leqslant 6)$
$0.8413-0.3097=0.54$
Conversion ham $N(\mu, r) \overline{5}+$ score

$$
\begin{aligned}
& t=\frac{x-\mu}{\sigma} \\
& J x=2, x^{2} N(3,5) \\
& \Rightarrow t-v a l u s \text { ot } 2 \text { in } \quad t=\frac{x-\mu}{\sigma}, \frac{2-3}{5}=\frac{-1}{5}=-u t
\end{aligned}
$$

Panel 3
Central Civil Theorem - 'away Uni is haunch'
Say un e have a distribution of unlenow shape, with mean μ and std der. σ.
Supp ore we keep re leching sample of site n and compute the sample mean \bar{x} each Lime
Then: The \bar{x} hove normed distribution with mean μ and stol der. σ / \sqrt{N}
Shoot Form \bar{x} is $N\left(\mu \frac{\sigma}{\sqrt{R}}\right)$

Panel 2
Revere Cole up

$$
\begin{aligned}
& P\left(z \leqslant z_{0}\right)=0.25 \\
& 1 \\
& N(0,1) \\
& P\left(x \varepsilon x_{0}\right)=0.7 \text { where } x=N(75,10) \\
& C P(1745
\end{aligned}
$$

Conresion from of to $N(x, y)$:

$$
z=\frac{x-\mu}{\sigma} \quad \Leftrightarrow t \sigma=x-\mu
$$

$$
x=\sigma \cdot z+\mu
$$

Panel 4
Quit in lng. mpg for Us curs. MPC's have some dits. cull some μ ana σ
Sunny com, ron $M=400$, and cath bour mpg. Say I yt sonde wean $\bar{x}=235$ and $s=2.22$
Again: 400 other chis, hid $\bar{x}=221(x 231)$
Apes: 4∞ cons hill $\bar{x}=24.1(x 235)$
Knave \bar{x} are $N\left(\mu, \sigma / /{ }_{\mu}\right)$
Ex: Want to know $P(\#<\bar{x}<\psi)=0.9$

Panel 5

Jit lase umales are t-senes! $t=1.641$. Dut \bar{x} cous $N(\mu, \sigma / \ln)$ by cct

$$
1.645 \cdot \frac{x-\mu}{\frac{\pi}{1 / 2}} n \quad x=\mu=1.665 \frac{\sigma}{\sqrt{N}}
$$

Panel 7
Coufidence Intorvals

(1) Find $8 / \sqrt{1 p}$ (slemenced anor)
(2) Caunts: $1.645 \cdot \frac{5}{17}$
(3) Abwer: belareen $\bar{x}-10+5 \cdot \frac{5}{10}$ and

$$
\bar{x}+1.64 \cdot 5 / n
$$

90% carlein!

Panel 6

$$
\begin{aligned}
\text { If the } & x_{1}=\mu+1.645 \frac{\sigma}{\pi} \\
-1665 & \because \\
X_{2} & =\mu-1648
\end{aligned}
$$

Dadr to example
unhuonn
$N=400, \bar{x}=23.5, s=2.82$. Find μ

$$
\mu-1.645 \cdot \frac{(\theta)}{V_{Q}}=\bar{x}-1.645 \frac{s}{\sqrt{N}}=
$$

$$
=23.5-1.645 \cdot \frac{2.72}{\sqrt{40}}=22 . \pi
$$

$$
\mu+1.645 \cdot \frac{\sigma}{\sqrt{R}}=235+1.645 \cdot \frac{202}{\sqrt{605}}=24.14
$$

Conclunion: Kues that ang moy of all and in beluseen 22.8 and 25.14 , with 90% corlainly

Panel 8
 Saink 81 cum, hind $\bar{x}=10 \mathrm{mg}$ work $\sigma=5 \mathrm{mg}$
(1) Soudendenor: $5 / \sqrt{4}=5 / \sqrt{21} \cdot 5 / 9 \cdot 0 \pi T$
(2) Muliphir: $1.645 \cdot \frac{5 / 2}{}{ }^{2} / 645 \cdot 0555=0.4139$
(3) Ponswer: μ is letweeni $110 \pm 0.9135 \mathrm{mg}$, ar woth 99% dutaingy

Panel 10

Oher comimen alerids are

Panel 11
Ex: The acchive iuquchinto of some medication is weasiveel ib ppun. A raudom sample qives:
$10,14,9.5,7,10.9,11.5,12.7,10,9.8$
Find an estiunats for the unkuown populalion mean μ.
The unual confictence infervet is 95%

$$
\bar{x}=10.267, s=1.581
$$

\Rightarrow sld coror $=\frac{15 \pi}{\sqrt{a}}=\frac{1.591}{3}=0.527$ the wult 1.96.0.577-1.033
μ is 10.267 ± 1.033, or μ in lelweng pit and il.s

Conkdence IVerval about μ
(1) Find $\frac{\sigma}{\sqrt{N}}=\frac{s}{\sqrt{N}}$
(2) Hulliplion $90 \%, 1.645 \frac{\mathrm{~S}}{R}$

$$
95 \% \cdot 1.96 .5 / \sqrt{n}
$$

(3) Auswer.

$$
99 \% \cdot 2 \sqrt{4} \cdot 5 \%
$$

$$
\bar{x} \pm()
$$

Jan 90% or 91% or 99% certerial

Panel 12
Simplens: θ_{n} Phone
L) auler +1
2.) Stuts $\rightarrow 7$-stects \rightarrow One Samph \rightarrow will duth chach DD Conticlence indorial
hit Compat
C. Cimiti 9.83
U Cinsl: $\overrightarrow{I T}$

Panel 14

Ex: To at solder with new halmets, we neul To lenow their any headize.
Get 1000 sulchess, fand, suy, that $\bar{x}=52 \mathrm{~cm}, s=P .5$ Wout to froed μ aill 99% corberinty.
shed enve $85 / \sqrt{1000}=0.2688$
wultaphas: $2.54 \cdot 0.269 P=0.6927$
μ equats 52 ± 0.6927 or μ belven 57.37 and $52.093,99 \%$ sure d it

Panel 15
Is 90% or 99% higgr?
Wint 10 lind, astindle, μ.
Will 100% cerlecinly, μ in belween $-a$, o 99% sure. 5 to 11 $9 r \%$ is smaller tan $(5,11)$, song $(6,10)$ 90% is sualler stall $\approx(0,9)$

$$
1 \%
$$

$$
(8.49,8+1)
$$

Qz(1) $P(z \leq 1,6)=$?
(i) $P(z \geq 7)=0.5$

Ex, The accive inquechanto of some medicalion is measureel io 1 ppon. A raudom sample ques.

$$
10,14,9.5,77,10.9,11.5,12.7,10,9.8
$$

 mean μ.
we selet sumpen of sbe H by will las a

