This is a practice exam only. The actual exam may differ from this practice exam.

Please provide brief answers to the following questions:

- a) If you are using a t-distribution with df = 11 for a statistical test at the a = 0.05 level, then the corresponding number t_a will be what?
- b) If you are using a t-distribution with df = 11 for a statistical test at the a = 0.05 level, then the corresponding number t_a will be what?
- c) If you are using a t-distribution with df = 11 for a statistical test, and the number t_0 you compute is $t_0 = 2.10$, whereas the number t_1 you look up is $t_1 = 2.41$. What is your conclusion for the corresponding test?
- d) If you are using z-distribution for a statistical test at the usual 0.05 (= 5%) level of significance, the number z_0 you compute is $z_0 = 2.89$, and the corresponding p-value for that value of z_0 is 0.038. What is your conclusion for the corresponding test?
- e) Someone is interested in designing a statistical test for the mean of a population. In deciding whether to use a test based on the *t*-distribution or a test based on the standard normal distribution, what is the deciding factor?
- 3. Please provide brief answers to the following questions:
 - a) If you are using a **t-distribution** with df = 10 for a **2-tail** statistical test at the a = 0.05 level, then the corresponding number t_a will be what?
 - b) If you are using a **t-distribution** with df = 9 for a **2-tail** statistical test, and the number t_0 you compute is $t_0 = 2.45$, whereas the number t_1 you look up is $t_1 = 2.262$. What is your conclusion for the corresponding test?
 - c) If you are using z-distribution for a 1-tail statistical test at the usual 5% level of significance, the number z_0 you compute is $z_0 = 1.64$, and the corresponding p-value for that value of z_0 is p = 0.0505. What is your conclusion for the corresponding test?
 - d) Someone is interested in designing a statistical test for the mean of a population. In deciding whether to use a test based on the *t*-distribution or a test based on the standard normal distribution, what is the deciding factor?
 - e) You are conducting a 2-tailed statistical test for the population mean at the $\alpha = 0.05$ level. The null hypothesis is $H_0 = 17.1$, while the alternative hypothesis is $H_a > 17.1$. The sample size is large enough to use a normal distribution, and the statistics for the sample turns out to be $z_0 = 2.045$. From the standard normal table for the z-distribution you compute P(z > 2.045) = 0.0202. What is your conclusion?
 - f) A statistical test for the population mean at the $\alpha = 0.05$ level results in your rejection of the null hypothesis. Can the null hypothesis still be true? If so, what is the probability that the null hypothesis is true, even though you rejected it?

You are conducting a 1-tailed statistical test for the population mean at the $\alpha = 0.05$ level. The null hypothesis is $H_0 = 17.1$, while the alternative hypothesis is $H_a > 17.1$. The sample size is large enough to use a normal distribution, and the statistics for the sample turns out to be $z_0 = 2.045$. What is your conclusion?

A statistical test for the population mean at the $\alpha = 0.05$ level results in your rejection of the null hypothesis. Can the null hypothesis still be true? If so, what is the probability that the null hypothesis is true, even though you rejected it?

You were asked to compute a 95% confidence interval. The resulting interval, however, turned out to be too large to be of use to your client. What could you do to achieve a smaller confidence interval?

On average, do males outperform females in mathematics? To answer this question, psychologists at the University of Minnesota compared the scores of mail and female eighth-grade students who took a basic skill math test. A summary of the test scores is displayed below.

	Males	Females	
Sample Size	1764	1739	
Mean	48.9	48.4	
Standard Deviation	12.96	11.85	

The Cleveland Casting plant produces iron automotive castings for Ford When the process is stable, the target pouring temperature of the molten iron is 2,550 degrees. The pouring temperatures for a random sample of 10 crankshafts produces at the plant are listed below. Does the mean pouring temperature differ from the target setting?

2543, 2541, 2544, 2620, 2560, 2559, 2562, 2553, 2552, 2553

According to USA Today (Dec. 1999) the average age of MSNBC TV News viewers is 50 years. A company wants to market a product for this age group, but wants to ensure that the USA Today study is correct before investing advertisement money. They select 50 US households at random that view MSNBC TV News and find their average age to be 51.3 years with a standard deviation of 7.1 years. Should the company invest in advertising?

The "fear of negative evaluation" (FNE) scores for 11 bulimic female students and 14 normal female students are shown below (the higher the score, the greater the fear of negative evaluation). What is the average FNE score of bulimic female students and that of normal female students ? Is there a significant difference between the mean FNE scores?

Bulimic students: 21, 13, 10, 20, 25, 19, 16, 21, 24, 13, 14 **Normal students**: 13, 6, 16, 13, 8, 19, 23, 18, 11, 19, 7, 10, 15, 20

Suppose you want to compare a new method of teaching reading to "slow learners" to the current standard method. You select a random sample of 22 slow learners; 10 of them are taught by the new method and 12 are taught by the standard method, for the same period of time. The reading scores for the two groups were as follows:

New Method	Standard Method		
80, 80, 79, 81, 76, 66, 71, 76, 70, 85	79, 62, 70, 68, 73, 76, 86, 73, 72, 68, 75, 66		

a) What is the difference in average reading scores between the two methods?

b) Conduct a test to determine whether the new method is better than the standard method.

The lifetimes (in years) of ten automobile batteries of a particular brand are:

	2.4	1.9	2.0	2.1	1.8
	2.3	2.1	2.3	1.7	2.0
Estimate the m	nean lifetim	ne for all	batteries,	using a 9	95% confidence interval.

A large supermarket chain sells longhorn cheese in one-pound (= 16 ounces) packages. As a city inspector you weigh 81 randomly selected packages of cheese and note that the sample mean is 15.58 ounces, with a standard deviation of 1.44 ounces. You therefore suspect that the chain is miss-labeling the cheese and that the actual weight of a package is less than 16 ounces. Use this data to test your suspicion against the null hypothesis that the average weight of a package is 16 ounces. Use $\alpha = 0.05$.

A test was conducted to determine the length of time required for a student to read a specified amount of material. All students were instructed to read at the maximum speed at which they could still comprehend the material. Sixteen students took the test, with the following results (in minutes):

25, 18, 27, 29, 20, 19, 25, 24, 32, 21, 24, 19, 23, 28, 31, 22

Estimate the mean length of time required for all students to read the material, using a 95% confidence interval.

A group of 26 rats was selected for a study to test a new drug. Each rat's heart rate was measured prior to receiving that drug and again 2 hours later. The sample mean drop in blood pressure between the readings was 28.2, and the standard deviation was 10.0. You know from previous experiments that the average drop of blood pressure for all other available drugs is 25.0 in a similar setup. Use this data to test your claim that your drug will deliver a better performance than the previously available drugs. Use $\alpha = 0.05$.

The caffeine content of a random sample of 90 cups of black coffee dispensed by a new machine is measured. The mean and standard deviation for the sample are 110 mg and 6.1 mg, respectively.

- a) Compute a 90% confidence interval for the true population mean caffeine content per cup dispensed by the machine.
- b) If you would compute a *99% confidence interval* for the true population, would it be wider or narrower than the 90% confidence interval? (You do **not** actually have to compute this interval to answer the question).
- c) Another person selected a random sample of 900 instead of 90 cups, and the mean and standard deviation of this larger sample turned out to be 110mg and 6.1mg as well. That person uses her data to compute a 90% confidence interval. Would the 90% confidence interval for the larger sample size be wider or narrower than the 90% confidence interval for the smaller sample size ?

To test the research hypothesis that teacher expectation can improve student performance, two groups of 61 students were compared. Teachers of the experimental group were told that their students would show large IQ gains during the test semester, while teachers of the control group were told nothing. At the end of the semester, IQ change scores were calculated with the following results:

	Mean	Standard Deviation	Sample Size
Experimental	16.5	14.2	61
Control	7.0	13.1	61

Test the null hypothesis of no effect on mean IQ change scores against the above research hypothesis.

Over the past five years the mean time for a warehouse to fill a buyer's order has been 26 minutes. Officials of the company believe that the length of time has increased recently, either due to a change in the work force or due to a change in customer purchasing policies. The processing time (in minutes) was recorded for a random sample of 121 orders processed over the past month. The mean of that sample is $\overline{x} = 28.20$ and the sample standard deviation is s = 11.44. Does this data present sufficient evidence to indicate that the mean time to fill an order has increased, if your error is supposed to be no larger than 0.05? Justify your argument by setting up all four components of a statistical test.

A poll of 100 US congress people was taken to determine their opinions concerning a bill to raise the ceiling on the national dept. Each congressperson was then classified according to political party affiliation and opinion on the policy. The results are summarized below. Since the vote is close one would like to find out whether congress voted along party lines or not. Therefore, please test the null hypothesis that these two classifications are independent of one another, against the alternative hypothesis that they are not. Use a level of significance of 0.05

		do not approve of	non opinion yet	
	approve of bill	bill		Total
Republican	28 (22.09)	14 (19.74)	5 (5.17)	47
Democrat	19 (24.91)	28 (22.26)	6 (5.83)	53
Total	47	42	11	100

StatCrunch computes the Chi-Square distribution as follows:

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	6.143 ^a	2	.046
Likelihood Ratio	6.222	2	.045
N of Valid Cases	100		

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 5.17.

We are interested in which person people would have voted for, if they had voted, in 2004. In particular, we want to know if the majority would have voted for or against Georg Bush. We use our GSS data and define a proportion variable to mean 1 if a person would have voted for Bush, and 0 if not. With the help of StatCrunch we conduct a test for propoprion Pi = 0.5 and find the following output:

Hypothesis test results: Outcomes in : WOULD HAVE VOTED FOR IN 2004 = Bush Success : 1 p : proportion of successes $H_0: p = 0.5$ $H_A: p \neq 0.5$

Variable	Count	Total	Sample Prop.	Std. Err.	Z-Stat	P-value
WOULD HAVE VOTED FOR IN 2004 = Bush	195	629	0.3100159	0.019936306	-9.529554	<0.0001

What is your conclusion?

For the same setup as in the previous question, we have used StatCrunch to compute the confidence interval for Pi, the probability of success. We find:

95% confidence interval results:

Outcomes in : WOULD HAVE VOTED FOR IN 2004 = Bush Success : 1 p : proportion of successes Method: Standard-Wald

Variable	Count	Total	Sample Prop.	Std. Err.	L. Limit	U. Limit
WOULD HAVE VOTED FOR IN 2004 = Bush	195	629	0.3100159	0.018441074	0.27387205	0.34615973

What does this mean and how does it connect to your result in the previous question.

We suspect a coin to be not fair. Suppose we flip that coin 200 times and we come up with 94 heads, 106 tails. Based on this evidence, do you think the coin is unfair?

We conduct a survey to ask people if they are for or against Hydraulic fracturing in a particular county. The survey asked 265 people, 116 came out for the practice, 149 against. Compute a 95% confidence interval for the probability of voting for hydraulic fracturing. If you were to advise a congress person to represent her district accurately, would you advise her to vote for or against the practice?