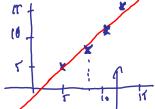
MATH 1203 – Practice Exam 2

This is a practice exam only. The actual exam may differ from this practice exam.

1. Please state the Central Limit Theorem as discussed in class.
If I hease state the Central Limit Theorem as discussed in class. If x vio a vanishly will some unknown eliberation with mean n and still due to and we select scumples of site N and compute their mean \bar{x} then \bar{x} is normal
and we select samples of the 17 and compare man well & when & its normal
wean in and stol der.
2. Please state, in your own words, what the following terms mean
 Contingency Table Chi-Square Test Least-Square Regression
nearly advantage and the property of the prope
Confidence Intervals A public of a Chi annuara Teat
 p-value of a Chi-square Test Correlation Coefficient r
Scatter Plot
Least Square Regression line
 P(event) = 0 P(z < 1), where z has a standard normal distribution
3. Please decide if the following statements are true or false. If the revelue of a Chi Square test is along to one the association between two variables is strong.
If the p-value of a Chi-Square test is close to one, the association between two variables is strong. Both the p-value of a Chi-Square test and the correlation coefficient r tell you whether two variables are related,
but the correlation coefficient r carries even more information.
• A Chi-Square test is appropriate for categorical variables, a regression analysis is appropriate for two numeric variables.
• The expected value in a cell of a contingency table tells you how many items would fall in that cell if the two
variables were independent of one another.
 If an expected value in any cell of a contingency table is less than 5, then the two variables are dependent. Suppose you compute the equation of a least-square regression line as y = -2 x + 3 and the correlation coefficient r
$\mathbf{f} = 0.8$, could that be possible?
If $r = 0.8$, it means that two variables are strongly related in such a way that as x gets larger, the corresponding y
gets smaller. One of $P(z < 2) = 0.02211$ To so, it inecasts that two variables are strongly related in such a way that as X gets larger, the corresponding X gets X and X are two variables are strongly related in such a way that as X gets larger, the corresponding X and X and X and X and X are two variables are strongly related in such a way that as X gets larger, the corresponding X and X are two variables are strongly related in such a way that as X gets larger, the corresponding X and X are the corresponding X value is X .
$\sim 11 \text{ A is N(10, 2)}$ and $A = 11$, then the corresponding z-value is 2.1.
• \ddagger If X is N(95, 10) then P(X > 105) = 0.21341
• T A 95% confidence interval means that you are 95% certain that the true population mean is contained in the computed interval.
• T A 99% confidence interval is <i>smaller</i> than a 90% confidence interval.
4. Compute the following probabilities:
 Compute the following probabilities: In tossing one coin twice, find P(HH) or P(exactly one head) or P(no head) or P(at least one head).
Allowscomes: TT, TH, HT, HH => P(44) =14, P(ex. one H) = 24, P(40 heart) = 14
• In throwing two dice, find P(sum is 4) or P(sum = 1) or P(sum is 4 or more)
1 2 3 4 T 6 7 3/36 0 33/36
3 * 5 6 7 8 9 5 6 7 8 9 10 5 6 7 8 9 10 1
7 3 6 4 4 10 5 6 4 9 10 11

• In drawing one card randomly from a standard 52-card deck, find P(card is Ace) = 4

5. A (hypothetical) frequency distribution for the age of people in a survey, the categories have the following probabilities:


Category	Probability
0 - 18	0.15
19-40	0.25
41-65	0.1
65 and older	0.3

- One number is missing what is that number? O. (untless unstall & 1)
- What is the chance that a randomly selected person is 40 years or younger?

6. Please consider the following data:

a) find the mean for both variables

b) create a scatter plot representing this data

- c) draw a best-fit line through the scatter plot in part (b)
- d) find the exact equation of the least-square regression line

- e) compute Pearson's r 41 20.57 2 Q 972 9

Zx1, 394

f) predict the highest year of schooling for someone who's father completed 14 years of school.

Recall the corresponding formulas:

$$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$$
 $slope = \frac{S_{xy}}{S_{xx}}$ $y - intercept = \overline{Y} - slope \cdot \overline{X}$

7. The following scores were obtained as part of a sample with mean 10 and standard deviation 2. For each score, find the appropriate z-score: X = 10, X = 14, X = 6, X = -1. Then, for each z-score found, use the table at the end to find the probabilities of obtaining a score *less than or equal* to the computed z-score. Note: in mathematical notation this means that we want to find $P(z \le z_0)$, where z_0 is the computed z-score.

$$|0 - 0| = 0 = 0 = 0$$

$$|0 - 0| = 0 = 0$$

$$|0 - 0| = 0 = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

$$|0 - 0| = 0$$

- 8. Each score listed below comes from a sample with the indicated mean and standard deviation. Convert each one to a z-score and find the indicated probability (in percent). Note that drawing a picture will help to find the indicated probabilities (percentages).
 - X is normal with mean 3, standard deviation 1.5, find $P(x \le 6)$

• X is normal with mean 3, standard deviation 3, find $P(x \ge 9)$

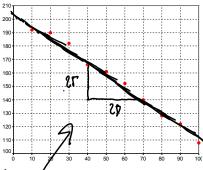
- X is normal with mean 0, standard deviation 2, find P(1 < x < 2) = P(0.7 < x < 1) = 0.3087 0.1077
- X is normal with mean 3, standard deviation 1, find $P(x \ge 2)$

9. Consider the following sample data, selected at random from some population:

a) What is your best guess for the unknown population mean?

b) Find the standard error for the sample mean.

c) Find a 95% confidence interval for the unknown population mean. 13 + 5.929 = 19.929 From 3.021 = 19.929


d) Find a 99% confidence interval for the population mean. Explain why this interval differs from the previous one.

e) If you were to compute a 90% confidence interval, would it be wider or narrower than the previous two?

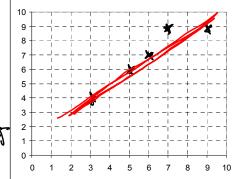
10. The table on page 592 in our text book can be used to compute probabilities for a variable z, assumed to have the Standard Normal Distribution N(0, 1). Use that table to find the following probabilities and shade the parts in the probability distribution that corresponds to the probability you computed.

$$P(z < 1.1)$$
 = (-0.1377)
 0.1377
 $P(z > -1.2)$ = (-0.117)
 $P(z > 1.3)$ - 0.0007
 $P(z < -1.6)$ = 0.0007
 $P(1.2 < z < 2.1)$ = $0.1171 - 0.0074$
 $P(-2.1 < z < -1.2)$ = $0.1171 - 0.0074$
 $P(-1.2 < z < 2.1)$ = $0.1171 - 0.0074$
 $P(-1.2 < z < 2.1)$ = $0.1171 - 0.0074$
 $P(-1.2 < z < 2.1)$ = $0.1171 - 0.0074$
 $P(-1.2 < z < 2.1)$ = $0.1171 - 0.0074$

11. When using StatCrunch to draw a scatter plot, it comes up with the following picture:

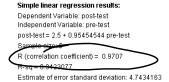
- a) Draw a "best-fit" line through this data.
- b) Use the line to estimate the y-intercept and slope of the equation of the least-square regression line

c) Look at the data and your line and estimate whether r would be close to -1, close to 0, or close to 1


7 = - O.9 Lecaure data lives up usually and slope is negative

12. Please consider the following results on a quiz, measuring scores before and after a certain lecture.

X Before lecture: 5, 6, 7, 9, 3 **After lecture:** 6, 7, 9, 9, 4


- Create a scatter plot representing this data, including a best-fit line for the data
- Find the exact equation of the least-square regression line

Compute the correlation coefficient r (use back page for computation but show r here)

Predict the "after lecture" score for a "before lecture" score of 8.

13. When using StatCrunch for a linear regression analysis of pre-test versus post-test scores, it computes the output:

Parameter estimates:									
Paramete	arameter E <u>stima</u>		Std. Err.		Alternative	DF	T-Stat	P-Value	
Intercept	/	2.5	1	0.712143	≠ 0	3	0.23338002	0.8305	
Slope		0.95454544	0.	3636364	≠ 0	3	7	0.006	

Find the equation of the least-square regression line
$$\gamma = 0.9545 \times t 2.5$$

What is the correlation coefficient, and what does it mean

Do you think your prediction is accurate? Justify your answer using the correlation coefficient

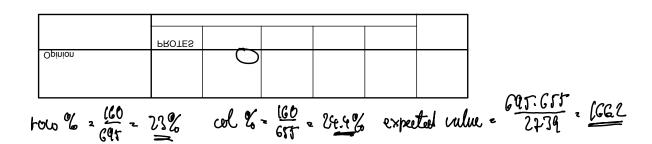
14. The table below shows a contingency table for the variables "DEGREE" by "RACE". Each cell lists three numbers: the count, the row, and the column percentage.

		1			
DEGREE	HIGHEST DEGREE	70.5%	23.0%	6.5%	100 0%
	RESPONDENT	12 5%	ク 后 ℞%	10.7%	15 5%
,	HIGHEST DEGREE	81 0%	13 6%	4 5%	100 0%
	RESPONDENT	54 7%	53.4%	47 0%	54 1%
	HIGHEST DEGREE	85.0%	12 R%	2 1%	100 0%
	RESPONDENT	6.8%	6 n%	2 6%	6 5%
	HIGHEST DEGREE	83 O%	α 1%	7 0%	100 0%
	RESPONDENT	16 R%	10 8%	21 0%	16 3%
	HIGHEST DEGREE	86 6%	7 1%	6.3%	100 0%
	RESPONDENT	8.3%	4 0%	0.3%	7 7%
	HIGHEST DEGREE	81 ∩%	13 8%	F 2%	100 0%
	RESPONDENT	100 O%	100 0%	100 0%	100 0%

Which of the two variables is independent, which is the dependent variable? a)

b)

c)


Compute the expected value for the cell "Whites with a High School degree"
$$1767. \frac{2347}{2997} = 1269. \Gamma$$

How many Blacks have a high school degree, in percent d)

How many people with a college degree, graduate or bachelor, are White, in percent? e)

How many Blacks have at most a junior college degree, in percent? 25.7%+ 53.4% + 6% = 85.2% f)

- 15. Consider the contingency table for religious preference versus political opinion, using our GSS survey below.
 - a) Compute the row percentage in the "Liberal and Catholic" cell, as well as column percentage and expected value.

b) Using StatCrunch, we conducted a Chi-Square test with the output as follows:

Chi-Square test:

Statistic	DF	Value	P-value	
Chi-square	72	215.39447	<0.0001	

What is your conclusion?

PEDIOT => lurs is un association between sue + degree

c) Why should you compute and double-check all expected values in that table before finalizing your conclusion?

to check that hove is less than J.

16. To investigate whether a relation exists between affiliation with a particular political party and the opinion on gun permits we used *StatCrunch* to create the following contingency table.

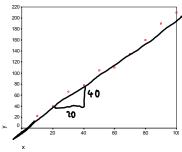
	1				
	•				
GUN PERMITS					

a) Based on that table, do you think there is strong evidence that the two variables associated, using common sense?

looks evenly distributed , so guess no association

b) Based on your analysis in part (a), what do you think might be the p-value of a Chi-Square test for this data?

17. Use the GSS survey data to find the average number of siblings for people in the US in 1996 with reasonable accuracy. Note: Using *StatCrunch* we found that the descriptive statistics for the variable 'sibs' is as follows:


N 2897 Mean: 3.86 choose 97% confidence interval.

Standard Deviation: 3.52

standard error: 3.72/2997 20.065, muliplier 196.

From 3.96-1.96.0.067 = 3.96-0.13 = 3.73 to 3.96+0.13 = 3.99

18. When using *StatCrunch* to draw a "scatter plot, it comes up with the following picture:

- a) Draw a "best-fit" line through this data.
- b) Use the line to estimate the y-intercept and slope of the equation of the least-square regression line

c) Look at the data and your line and estimate whether r would be close to -1, close to 0, or close to 1.

T = 0.9