Z-Scores Worksheet

1. The following scores were obtained as part of a sample with mean 10 and standard deviation 2 . For each score, find the appropriate z-score:

$$
\begin{aligned}
& X=10: z= \\
& X=14: z= \\
& X=20: z= \\
& X=6: z= \\
& X=18: z= \\
& X=-1: z=
\end{aligned}
$$

2. For each z-score found in the first problem, use the table in the appendix, pages 592 etc., to find the probabilities (in percent) of obtaining a score less than or equal to the computed z-score. Note: in mathematical notation this means that we want to find $P\left(z \leq z_{0}\right)$, where z_{0} is the computed z-score. Careful: the numbers in the table do not give you $P\left(z \leq z_{0}\right)$ directly!
3. Each score listed below comes from a sample with the indicated mean and standard deviation. Convert each one to a z -score and find the indicated probability (in percent):
$\mathrm{X}=9$ (mean 3, standard deviation 3), $P(x \geq 9)$
$z_{0}=$
$P\left(z \geq z_{0}\right)=$
$\mathrm{X}=6$ (mean 3, standard deviation 1.5), $P(x \leq 6)$
$z_{0}=$
$P\left(z \leq z_{0}\right)=$
$\mathrm{X}=2$ (mean 0 , standard deviation 1$), P(-2 \leq x \leq 2)$
$z_{0}=$
$P\left(-\mathrm{z}_{0} \leq \mathrm{z} \leq \mathrm{z}_{0}\right)=$
$\mathrm{X}=2$ (mean 3 , standard deviation 1), $P(x \geq 2)$
$z_{0}=$

$$
P\left(z \geq z_{0}\right)=
$$

Note that drawing a picture will help to find the indicated probabilities (percentages).

