OOP Programming Guidelines 
The following guidelines help to apply object-oriented programming techniques to real-world programming jobs:

(1) Understand: Write down exactly what the problem entails and what the deadlines are. Identify tasks you cannot do. Discuss your understanding with the customer and other users.

(2) Analyze: Identify entities as models for classes. Use "has-a", "does-a", and "is-a" to identify fields, methods, and inheritance. Collect useful existing classes and ask other programmers.

(3) User Interface: Sketch a rough layout for a user interface. Look at comparable programs. Discuss your layout with the customer and potential users.

(4) Generalize: Look for general concepts and identify classes that can serve as superclasses. Identify classes that can be useful for other projects.

(5) Divide and Conquer: Divide problem into categories (classes) and categories into tasks (methods). Create class skeletons and specify field types, method headers, and hierarchies.

(6) Implement: Implement classes designed in (5). Modify class skeletons if necessary. Make classes as flexible as possible. Restrict user interaction to as few classes as possible.

(7) Test: Test classes individually. Test program to solve original problem. Take user errors and extreme cases into account. Let customer test your program. Refine classes and retest.

(8) Document: Provide complete documentation and supporting documents for your program. Clarify usage instructions and limitations of your program.

Example: Create a checkbook program to keep track of checks and deposits. 
(1) Understand: Your program should keep a record of all checks and deposits written, as well as the current total balance, and present the user with a list of all transaction as well as the balance on the checkbook. You should be able to add and remove transactions, but not edit them. You should not be allowed to write a check if insufficient funds are available. 

Can't do yet: You should be able to sort checks/deposits by number, by date, by payee, and by amount, and to find a particular check. You should be able to save the checkbook for later retrieval, and to print all or a group of checks.

(2) Analyze: Based on the description of our project, the following entities are candidates for classes:

Check: contains information for one check plus methods to set/get the information. Each check should store the check number, amount, payee, date. The amount is subtracted from the balance.
· 'is-a':
transaction

· 'has-a':
date, check number, amount, and payee

· 'does-a':
set/get information, return convenient check representation
Deposit: contains same information as a check, but amount is to be added to the account balance. Has similar fields/methods as "Check".
Administrative Transaction: contains same information as check, but is used for special transactions such as initial deposit, account adjustments, interest payments, etc. The payee is always the bank for this type. Has similar fields/methods as "Check".
Checkbook: stores all transactions in a list, as well as general account information such as bank name and phone, user name, etc. Also contains the current total. You can add and remove transactions, as well as sort them according to different criteria, but adding transactions only works if there are sufficient funds available.
· 'has-a':
list of checks, number of deposits, checks, transactions, totals for deposits, checks, and transactions, final total

· 'does-a':
add a check, delete a check, retrieve i-th check, retrieve summary information
Program: The program class contains the GUI to interact with the checkbook and various transaction classes. It regulates which method is called at what time, and when new objects are created and what to do with them. It does not actually do any computations.
· 'is-a':
Frame

· 'has-a':
Checkbook, various GUI elements (buttons, checkboxes, lists, menus), fields for summary information, fields for input of new transactions

· 'does-a':
react to GUI element events to call other methods
Other classes: Frame, various GUI classes, possibly a "Date" class and a "List"-like class would be useful to have.
(3) User Interface: Here are various designs of possible user interfaces for our program:

