Manipulating the DOM

When a web browser reads a proper XHTML document, it constructs a ‘tree’ representation of the data. That structure is called the Document Object Model, or DOM. That DOM can be manipulated using JavaScript, which is the correct way to achieve dynamic changes in the layout of a web page. And one of the really nice features of the DOM is that a page is refreshed without reloading when the DOM changes. Here is some example, showing how to expand and collapse an item in a list. Let’s start with a simple (X)HTML document:

<html>

<head>

<title>Manipulating the DOM</title>

</head>

<body>

<h1>Manipulating the DOM</h1>

<p>This is some text inside a paragraph.</p>

 List item 1

 List item 2

</body>

</html>

We first add functions and buttons to expand/collapse:

<html>

<head>

<title>Manipulating the DOM</title>

<script language="javascript" type="text/javascript">

function collapse()

{

var item1 = document.getElementById("item1");

item1.innerHTML = "List item 1";

}

function expand()

{

 var item1 = document.getElementById("item1");

 item1.innerHTML = "List item 1 has many additional details
 that only become visible now"

}

</script>

</head>

<body>

<h1>Manipulating the DOM</h1>

<p>This is some text inside a paragraph.</p>

 List item 1

 List item 2

<form>

<input type="button" value="Expand" onclick="expand()">

<input type="button" value="Collapse" onclick="collapse()">

</form>

</body>

</html>
Next we could add a ‘global’ boolean variable item1Expanded and a “change” function that would collapse the entry if it’s expanded and expand it if it’s collapsed. Finally we’d do the same for the second item and so forth.

The same idea of manipulating the DOM can be used for very simple animations by switch images, for example to pull a rabbit out of a hat (or, more productively, to create a slide show). Let’s start with a simple image of a top hat (of course you need to download the image from our web site first):

<html>

<head>

<title>Magic</title>

<style>

</head>

<body>

<h1 class="center">A Magic Trick</h1>

<p>

</p>

<p>Title</p>

</body>

</html>

We add ids, scripts, etc, similar to before, but instead of replacing the “innerHTML” of some text we replace the “src” attribute of the image tag. We also use a boolean variable rabbitVisible so we can tell which image is currently shown. The variable is placed outside any function so it executes only once when the page loads (it represents a "global" variable, visible to all functions defined on the page).
<head>

<meta content="text/html; charset=utf-8" http-equiv="Content-Type" />

<title>Magic</title>

<script language="javascript" type="text/javascript">

var rabbitVisible = false;

function magic()

{

var image = document.getElementById("hat");

if (rabbitVisible)

{

image.setAttribute("src", "topHat.gif");

rabbitVisible = false;

}

else

{

image.setAttribute("src", "rabbit-hat.gif");

rabbitVisible = true;

}

}

</script>

</head>

<body>

<h1 class="center">A Magic Trick</h1>

<p>

</p>

<p>Title</p>

</body>

</html>

To make it look perfect, we add a table to force the top hat to stay at the same height as the rabbit-expanded hat. The script remains the same.

<body>

<h1 class="center">A Magic Trick</h1>

<table align="center">

<tr><td height="500" valign="bottom">

</td></tr>

</table>

</body>

A Math Example

We want to find an approximation of the number [image: image2.png]

 (Pi) experimentally. To do this we imagine a cannon that shoots a ball into a square with corners (1,1), (-1,1), (-1,-1), (1,-1). We assume that the ball always lands inside that square, but at completely random locations. In particular, sometimes the balls falls inside a circle of radius 1 centered at the origin, other times it falls outside that circle:

 SHAPE * MERGEFORMAT

 [image: image4.wmf]
If T is the total number of shots, and I is the number of times the ball lands inside the circle, we finally compute [image: image6.png]

We want to display instructions, offer the user a ‘Go’ button, and then see the results displayed in the existing page.

Attempt 3:

<html>

<head>

<title>Experimenting with Randomness</title>

<script language="javascript" type="text/javascript">

function simulateCannon()

{

 var totals = 1000.0;

 var inside = 0.0;

var fieldTotals = document.getElementById("totals");

var fieldInside = document.getElementById("inside");

var fieldAnswer = document.getElementById("answer");

for (var count = 1; count <= totals; count++)

{

var x = 2.0 * Math.random() - 1.0;

var y = 2.0 * Math.random() - 1.0;

var r = Math.sqrt(x*x + y*y);

if (r < 1)

{

inside++;

}

 }

 fieldTotals.innerHTML = "" + totals;

 fieldInside.innerHTML = "" + inside;

 fieldAnswer.innerHTML = "" + 4.0 * inside / totals;

 }

</script>

</head>

<body>

<h1>Experimenting with Randomness</h1>

<p align="center">

</p>

 Total shots: 0.0

 Inside circle: 0.0

 Estimation: 0.0

<form name="form">

<input type="button" value="Shoot" onclick="simulateCannon()" /> de Cannon

</form>

</body>

</html>
Homework: Use a text field so that a user can type in the desired amount of tries/shots themselves. Remember from a previous example, to define a named text field inside a form, you could use:

<input type="text" value="500" name="shots" />

and to read the value of the field, assuming it is named "shorts" inside a named form "form", you'd use for example:

alert("Shots: " + document.form.shots.value);

Alternatively, you could give the text field an id instead of (or in addition to) a name, like this:

<input type="text" value="1000" size="10" id="input"> times.

and then you can access the value of the input field by using the getElementById function, as in:

var inputTotals = document.getElementById("input");
alert("Shots: " + inputTotals.value);
Timers and Recursion
JavaScript provides easy access to a timer via the window functions setTimeout(‘function()’, millisecs) and clearTimeout(var), where the input to the clearTimer method is the return value of the setTimer function. Here are a few examples.

Simple timer:
<html><head>

<script language="javascript" type="text/javascript">

function delayedAlert()

{

var timer = window.setTimeout("alert('Time is up')", 5000);

}

</script>

</head>

<body>
<input type="button" value="Start timer" onclick="delayedAlert()" />

</form>

</body></html>
Count-down Timer:
<html><head>

<script language="javascript" type="text/javascript">

var counter = 20;

var timer = null;

function countdown()

{

var outputField = document.getElementById("output");

outputField.innerHTML = counter + " seconds";

counter--;

if (counter >= 0)

timer = window.setTimeout("countdown()", 1000);

else

{

alert('Lift-Off');

counter = 20;

}

}

function stop_countdown()

{

window.clearTimeout(timer);

alert("Countdown interrupted");

}

</script>

</head>

<body>

<h1>Countdown</h1>

<p>Count: </p>

<form>

<input type="button" value="Countdown" onclick="countdown()" />

<input type="button" value="Emergency Stop" onclick="stop_countdown()" />

</form>

</body></html>
Note the use of the global variables counter and timer. They get defined and initialized only once when the page loads, but then every function inside the page can use them.
Questions: What happens if you interrupt the count-down and then start it up again. Will it continue where it left off or will it start back from the beginning? Also, what if we wait to lift-off and the start the count-down again? Will it work? Where will it start?
Falling Body Simulation
As an application of timers, let’s create three programs to simulate what happens when a ball is dropped from a large height, like 10,000 m. The first simulation will assume that there is no force other than gravity:
[image: image8.png]

We know from calculus that we could integrate a(t) once to get the velocity function v(t) and once more to get the distance function s(t). However, let's work numerically, pretending that we do not know how to integrate (which might not be too far from the truth :-). We therefore use so-called "iterative formulas", interpreting the dv/dt as a difference quotient, i.e. difference in velocity over the difference in time:
[image: image10.png]oy
G tats

 so that [image: image12.png]-glt,—t) =v,—ny

 or [image: image14.png]vy =—glt; —t)+n

and similarly

[image: image16.png]

 so that [image: image18.png]s;=v(t;—ty) +5

In other words, if we know the velocity at time 1 we can compute the velocity at the next time step, and then at the next one, and the next one, and the next one, and so on. Since our initial velocity is zero, we have a place to start. Similarly, we compute the distance iteratively , starting at the initial height for the first step of the process:
Simulation 1: drop a ball, no air resistance, simulation

<html><head>

<title>Gravity (no air, simulation)</title>

<script language="javascript" type="text/javascript">

var timer = null;

var init_height = 10000;

var delta_t = 0.1;

var g = 9.98;

var t = 0;

var height = init_height;

var speed = 0;

var timeField = null;

var heightField = null;

var speedField = null;

function drop()

{
timeField = document.getElementById("time");

heightField = document.getElementById("height");

speedField = document.getElementById("speed");

t = t + delta_t;

speed = - g*delta_t + speed;

height = speed*delta_t + height;

timeField.innerHTML = t;

heightField.innerHTML = height;

speedField.innerHTML = speed;

if (height >= 0)

timer = window.setTimeout("drop()", delta_t*1000);

else

alert("Hit the ground");

}

</script>

</head>

<body>

<h1>Gravity (no air, simulation)</h1>

<p>Press the <tt>drop</tt> button to simulate the drop of a ball from a

height of 10 km <i>without</i> air resistance. The values are updated every

0.1 seconds.</p>

<h3>Simulation</h3>

 Time: 0 sec.

 Height: 10000 meter

 Speed: 0 meter/second

<form>

<input type="button" value="Drop" onclick="drop()" />

</form>

</body>

</html>

Questions: Why do we define the three variables timeField, heightField, and speedField outside the function, yet initialize them inside the function. Why not (a) define and initialize the outside the function, or (b) define and initialize them inside the function.
The next simulation uses the assumption that the force downwards exerted by gravity is counteracted in part by an upwards force due to air resistance. In fact, air resistance is proportional to the speed an object is falling, so that:

[image: image19.png]

which can no longer be integrated easily (note that v is negative so that the above quantities actually have opposite signs). Thus, our solution, as before, is to use an iterative simulation as in our previous case so that:

[image: image21.png]vy =—(g+kv)(t; —t1) + 1y

 and [image: image23.png]s;=v(t;—ty) +5

Again, that really changes only two lines:
Simulation: drop a ball with air resistance, simulation

<html><head>
<meta content="text/html; charset=utf-8" http-equiv="Content-Type" />

<title>Gravity (with air, simulation)</title>

<script language="javascript" type="text/javascript">

var timer = null;

var init_height = 10000;

var delta_t = 0.1;

var g = 9.98;

var k = 0.5;

var t = 0;

var height = init_height;

var speed = 0;

var timeField = null;

var heightField = null;

var speedField = null;

function drop()

{

t = t + delta_t;

speed = -(g + k*speed)*delta_t + speed;

height = speed*delta_t + height;

timeField = document.getElementById("time");

heightField = document.getElementById("height");

speedField = document.getElementById("speed");

timeField.innerHTML = t;

heightField.innerHTML = height;

speedField.innerHTML = speed;

if (height >= 0)

timer = window.setTimeout("drop()", delta_t*1000);

else

alert("Hit the ground");

}

</script>

</head>

<body>

<h1>Gravity (with air, simulation)</h1>

<p>Press the <tt>drop</tt> button to simulate the drop of a ball from a

height of 10 km <i>with</i> air resistance. The values are updated every

0.1 seconds.</p>

<p>The acceleration acting on the ball are gravity, pointing down, and air

resistance, pointing up. Gravity is constant while air resistance is proportional

to the current speed.

</p>

<h3>Simulation</h3>

 Time: 0 sec.

 Height: 10000 meter

 Speed: 0 meter/second

<form>

<input type="button" value="Drop" onclick="drop()" />

</form>

</body></html>
If you run the first simulation you should see that our ball hits the ground at very high speed. In fact, our ball gets faster and faster and faster, which is not realistic. The second simulation, taking air pressure into account, will be closer to reality and will show that the ball eventually reaches a “terminal velocity”, which is define as that speed where the force due to air resistance will exactly counter-act the force of gravity so that the object no longer accelerates.
