Perl and SQL Databases
Perl offers a module for standardized access to SQL databases like MySQL. Here is a sample Perl to execute a SQL query:

#!/usr/bin/perl

use strict;

use warnings;

Import the DataBase Interface module

use DBI;

Define connection parameters

my $db_name = "DBI:mysql:testuser";

my $db_user = "testuser";

my $db_pass = "XXXX";

Define the SQL query to execute

my $db_query = "select id,first,last from people";

Connecting to the DB

my $dbh = DBI->connect($db_name, $db_user, $db_pass);

Preparing the SQL query

my $query = $dbh->prepare($db_query);

#Executing the query

$query->execute;

Iterating through the query result row by row

while (my @row = $query->fetchrow)

{

 my ($id, $first, $last) = @row;

 print "id = $id, name = $first $last\n";

}
Frequently used Perl functions

Here is a list of some Perl functions. For more info on a function, use perldoc -f chop

· The chomp() function will remove (usually) any newline character from the end of a string.

· The chop() function will remove the last character of a string (or group of strings).

· The index() function is used to determine the position of a letter or a substring in a string.

· The rindex() function is used to determine the position of a character in a string starting at the end.

· The length() function simply gives you back the number of characters in a string variable.

· The 'quote word' function qw() is used to generate a list of words.

· The split() function is used to split a string into smaller sections. You can split a string on a single character, a group of characters or a regular expression (a pattern). Example: split(split-char, string)
· The substr() function is used to return a substring from the expression supplied as it's first argument.

· With the join() function, you can merge as many strings together as you like, and you can specify what token you want to use to separate each string.

· The die() function is used to quit your script and display a message for the user to read. Most often used on the right side of the || operator as in chdir('/user/printer') || die("Error: $!");

Assignments

1. Write a program to prompt the user for first name, last name, and an ID and insert the data into our database.

2. Write a program to insert a new name and email into the database. Note that you will have to generate a unique ID, perhaps by using the “max” function of MySQL. You must use functions and the input should be of the form “first last email”.

3. Write a program to add an email to an existing user. It should check if the specified user exists and only add the email if it does.

Partial Solutions

1. Write a program to prompt the user for first name, last name, and an ID and insert the data into our database.

#!/usr/bin/perl

use strict;

use warnings;

use DBI;

get the data

print "Enter first name: ";

my $first = <STDIN>;

chomp($first);

print "Enter last name: ";

my $last = <STDIN>;

chomp($last);

print "Enter id: ";

my $id = <STDIN>;

chomp($id);

print "You entered: $first $last $id\n";

dabase parameters

my $db_name="DBI:mysql:testuser";

my $db_user="testuser";

my $db_pass="XXXX";

my $db_query="insert into people values ($id, '$first', '$last')";

my $dbh = DBI->connect($db_name, $db_user, $db_pass);

my $query = $dbh->prepare($db_query);

$query->execute;

Print "Data inserted\n";

The problem with this program is that you have to enter the ID yourself. However, our database was setup to require a unique ID, so you would need to generate a unique ID manually. One potential solution is to change the database setup to "auto-generate" the ID, which is certainly possible but requires modifying the database. Another possible solution is given in the next program.

2. Write a program to insert a new name and email into the database. Note that you will have to generate a unique ID, perhaps by using the “max” function of MySQL. You must use functions and the input should be of the form “first last email”.

In this case you have to query for first and last name and email, but generate unique id. If you knew the unique ID you could use was, say, 42, then to insert new data in the table would be done via the SQL statements:

insert into people values (42, 'Barack', 'Obama');

insert into emails values (42, 'president@whitehouse.org');

Assuming that the variables $first, $last, and $email have been filled with data by the user, similar to the above, a suitable Perl program might look as follows:

database parameters

my $db_name="DBI:mysql:testuser";

my $db_user="testuser";

my $db_pass="XXXX";

Setting up an SQL query to retrieve the max id value currently in the 'people' table

my $db_id_query="select max(id) from people";

Executing this query

my $dbh = DBI->connect($db_name, $db_user, $db_pass);

my $query_id = $dbh->prepare($db_id_query);

$query_id->execute;

Retrieving the answer,i.e. the max. id value currently stored, and incrementing it by 1

my @row = $query_id->fetchrow;

my $id = $row[0];

$id++;

Now we know a unique id we can use:

print "Unique id for the table people: $id\n";

Next we generate SQL queries to insert our data into the two tables, using the id value

we just found.

my $db_people_query="insert into people values ($id, '$first', '$last')";

my $db_emails_query="insert into emails values ($id, '$email')";

Executing both queries

my $query_people=$dbh->prepare($db_people_query);

$query_people->execute;

my $query_emails=$dbh->prepare($db_emails_query);

$query_emails->execute;
The above code shows the principle idea, but it does not use functions (or subroutines), as we are supposed to do, and we've skipped the data input part. To practice:

· Add a subroutine to get the first last email data from the user and uses the "split" function to break up the input string into the three components. Return these three values.

· Move the code to query for the max id into another subroutine. Input to that subroutine should be the 'db_name', 'db_user', and 'db_pass', and it should return a unique id for the people table.

3. Write a program to add an email to an existing user. It should check if the specified user exists and only add the email if it does.

This third assignment is left for you to do. The idea would be:

· Ask for user input to get name and email

· Query the database for the exiting name and get the corresponding value for the id field

· Use that id value to insert the email data into the emails table.

