Perl
From WikiPedia: Perl is a high-level, general-purpose, interpreted, dynamic programming language originally developed by Larry Wall in 1987 as a general-purpose Unix scripting language to make report processing easier. Since then, it has undergone many changes and revisions and become widely popular amongst programmers. Perl borrows features from other programming languages including C, shell scripting (sh), AWK, and sed. The language provides powerful text processing facilities without the arbitrary data length limits of many contemporary Unix tools, facilitating easy manipulation of text files. Perl gained widespread popularity in the late 1990s as a CGI scripting language, in part due to its parsing abilities.
In addition to CGI, Perl is used for graphics programming, system administration, network programming, finance, bioinformatics, and other applications. Perl is nicknamed "the Swiss Army chainsaw of programming languages" due to its flexibility and power. It is also referred to as the "duct tape that holds the Internet together", in reference to its ubiquity and perceived inelegance.
Perl was originally named "Pearl", after the Parable of the Pearl from the Gospel of Matthew. Wall discovered the existing PEARL programming language before Perl's official release and changed the spelling of the name. The name is occasionally backronymed as "Practical Extraction and Report Language" (which appears at the top of the documentation) and in some printed literature.

For extensive documentation of Perl, in particular a list of all of Perl's defined functions, type on the command line:

perldoc perlfunc
Simpe Perl programs

To create a Perl program, create a text file and run it from the command line via “perl progfile.pl”. Here is a simple program example:

#!/usr/bin/perl

use strict;

use warnings;

my $greeting = "Hello";

my $name = "Bert";

my $hasNoValue;

my $welcome = $greeting . " " . $name;

my $x = 10;

my $age = 3*$x+9;
print "$welcome, you are $age years old. $hasNoValue\n";
The first line allows you to mark the file as executable and run it from the command line. The Perl interpreter will be called automatically. The next two lines tell Perl to pay strict attention to the syntax rules, and to provide warnings when it finds anything questionable. Use of strict necessitates that variables must be defined via "my" before they can be used (but they can be defined anywhere in a program).

The program shows that Perl has two data types, numbers and Strings. Numbers can be manipulated mathematically as usual, including the usual C-like shortcuts ++, --, +=, *=, etc., while the dot operator concatenates strings. The "print" function prints out Strings, and can perform automatic variable substitution. Note that you can also use single quotes to define or print strings, but then no variable substitution is performed. Try it.

Different from most programming language, Perl has only three variable types. They are "scalar", "array", and "hash". All scalars are prefixed with a $ symbol, all arrays with an @ symbol, and all hashes with a % symbol.
Scalars

Here is a simple example assigning and working with strings

my $s = 'This is a string in single quotes ';

my $t1 = '$s that does not auto-expand';

my $t2 = "$s that does auto-expand";

my $t3 = $s . $t1;

my $t4 = $s x 3;

print "$s\n$t1\n$t2\n$t3\n$t4\n";

Here is another example working with numeric values

my $x = 3.14;

my $y = sin($x);

print "f($x) = $y\n";

my $i = 10;

my $j = 3;

print "$i / $j = " . ($i/$j) . "\n";

Now s is a string value

$s = "This has a string value";

And now it is an integer ...

$s = 10;

Finally, numeric variables can be compared with <, >, <=, >=, ==, !=, and <=> while string variables are compared with lt, gt, le, ge, eq, ne, cmp

my $s1 = 10;

my $s2 = 2;

if ($s1 < $s2)

{

print "Yes\n";

}

if ($s1 lt $s2)

{

print "No \n";

}

And now we can ring the bell to quit ...

my $bell = "\a" x 5;

print $bell;

Arrays

Now let's move to arrays, which can grow and shrink dynamically, so Perl arrays are really more like 'lists' + subscripts! List/array variables always start with @ and can be created in multiple ways

my @A = (10, 20, 30);

my @B = qw /Everyone wants rocks/;

Here qw stands for "quote word" - first and last symbol must match. The #ARRAY variable gives the length of a list and can be manipulated to adjust the array size. Note that actually it gives you the value of the last index, which is one less than the length of the string.

print "A has length $#A\n";

print "and contains $A[0], $A[1], and $A[2]\n";

print "B has length $#B\n";

print "and contains $B[0], $B[1], and $B[2]\n";

You can reset the size of the array by changing the #ARRAY variable

$#A = 0; # now A = (10)

$#B = -1; # now B is empty;

Arrays can be inserted into other arrays and be printed easily

@A = (10, 20, 30);

@B = qw /40 50 60/;

my @C = (@A, @B);

print "@C contains $#C elements\n";

Finally you can use the .. operator to define large arrays quickly

my @X = (1..10);

my @letters = ('a'..'z');

my @LETTERS = ('A'..'z');

my @alphabet = (@letters, @LETTERS);

print "Numbers: @X\n";

print "Letters: @letters\n";

print "Everything: @alphabet\n";

and you can do it also to create 'slices' of the array

my @firstTenLetters = @letters[0..9];

print "First 10 letters are @firstTenLetters\n";

Many functions operate directly on an array, e.g. 'push', 'pop', 'shift', 'unshift'. Push pushes elements on the right side of the array:

my @stack = (10, 20, 'go');

print "Stack: @stack\n";

push(@stack, 30);

print "Stack: @stack\n";

Pop removes elements from the right side of the array:

my $element = pop(@stack);

print "Stack: @stack, where we removed $element.\n";

Unshift adds elements to the left side of the array (basically)

my @queue = (10, 20, 'go');

print "Queue: @queue\n";

unshift(@queue, 30);

print "Queue: @queue\n";

Shift removes elements from the left side of an array (basically)

$element = shift(@queue);

print "Queue: @queue, where we removed $element\n";

Thus, unshift, pop, and arrays together make a true queue!

Hash

Hashes are like dictionary entries. The contain a term and a definition. For example:
my %debt = ("Bert" => 100, "Jane" => 200, "Joe" => 300);

will generate a hash with three keys, Bert, Jane, and Joe. You can access a value for a key using curly brackets:

my $total_debt = $debt{Bert} + $debt{Jane} + $debt{Joe};

You can use the "keys" function to extract all keys from a hash as an array. Note that the order of the keys is not necessarily the same order in which they were created.

my @values = keys(%debt);

print "Hash keys were: @values\n";
This is useful to iterate through a hash, using a for loop (see below for more control structures):

for my $value (keys(%debt))

{

print "$value => $debt{$value}\n";

}

Program Control
Perl has the standard control structures, and then some. You can have standard if, or if-else, or if-elsif-else statements. Note that the blocking brackets are mandatory !

print "Enter variable: ";

my $x = <STDIN>; # Quick excursion to simple input:

chomp($x);

Note that chomp removes the linefeed at the end - try example w/o chomp!

if ($x < 0)

{
print "$x is negative\n";

}

elsif ($x == 0)

{
print "$x is zero\n";

}

else

{
print "$x is positive\n";

}

There's also an 'unless' statement, which is the opposite of if:

unless ($x == 0)

{
print "$x is not zero\n";

}

There are loop structures while/until and do-while/until and for

$x = 1;

while ($x < 10)

{
print "x = $x\n";

$x++;

}

do

{
print "x = $x\n";

$x--;

} while ($x > 0);

for (my $i = 10; $i <= 100; $i+=10)

{
print "i = $i\n";

}

Most interesting, Perl can use a 'for' statement (or a 'foreach') to iterate through a list (aka array) (the $item is valid inside the structure only)

my @list = qw "Perl is an interesting language";

for my $item (@list)

{
print "$item\n";

}

We can, for example, use 'for' or 'foreach' to copy/reverse an array:

my @array1 = (10, 20, 30, 40, 50);

my @array2;

my @array3;

foreach my $item (@array1)

{
push(@array2, $item);

unshift(@array3, $item);

}

print "1st array: @array1\n";

print "2nd array: @array2\n";

print "3rd array: @array3\n";

Or you can even push the entire array onto another array

$#array2 = -1;

$#array3 = -1;

@array1 = (10, 20, 30, 40, 50);

push(@array2, @array1);

unshift(@array3, @array1);

print "1st array: @array1\n";

print "2nd array: @array2\n";

print "3rd array: @array3\n";

Note that the unshift operator did not quite work as intended.
Input
To find out command line parameters, ask the @ARGV variable:

print "Your command line parameters were: @ARGV\n";

Otherwise you can use <STDIN> to read from stdin. If you store it in a scalar, it reads one line only. If you store it in an array, it will read until 'eof' for redirects, end-of-pipe for pipes, or <CTRL-D> for manual input

The next example reads all ines from standard input, checks how many words a line contains, and prints out those lines that contain the string 'root'. Note that we are actually using 'pattern matching with regular expressions' here:

· the character ^ before 'root' means to look for words STARTING with 'root'

· the character $ after 'root' means to look for words ENDING in 'root'

If you include the ^ and $ you won't find a line containing uprooted but you will find this line because it contains the word root by itself.

my $line;

my @tokens;

while (defined($line = <STDIN>))

{

@tokens = split(' ', $line);

print "Number of tokens $#tokens\n";

if ($line =~ /^root$/)

{

print "Found root: $line";

}

}

Note that the "split" function splits a string at the given positions and returns an array of strings as a result. Here is a similar program, except it first read all input lines into an array then process the elements in the array.

my @array = <STDIN>;

print @array;

for my $line (@array)

{

if ($line =~ /^root$/)

{

print "Found root: $line";

}

}

Subroutines (aka Methods, Functions, or Procedures)

And we can of course define subroutines (or functions) in perl (anywhere!)

print "Defining subroutine\n";

sub hello

{
print "Welcome\n";

}

&hello; # the & is usually optional!

Functions can have input parameters that are stored in the @_ list (array) and return values via return

sub helloAll

{
return "Welcome @_\n";

}

print helloAll("Bert", "Silke");

It' best to store the input parameters in named variables which are automatically matched in order, or undefined if not enough are available

sub helloYou

{
my ($name1, $name2) = @_;

if (!($name1))

{
print "\tNote: variable \$name1 is undefined\n";

}

if (!($name2))

{
print "\tNote: variable \$name2 is undefined\n";

}

return "Welcome $name1 and $name2.\n";

}

print helloYou("Bert", "Silke");

print helloYou("Bert");

print helloYou("Bert", "Silke", "Leah");

Even better, you can do the following:

sub greet

{
my ($greeting, @names) = @_;

my $returnString;

foreach my $name (@names)

{
$returnString .= "$greeting, $name!\n";

}

return $returnString . "Where do you want to go today?\n";

}

print greet("Hello", "Bert", "Silke", "Leah", "Louise");

print greet("Welcome", "Joe", "Jim", "Jane");

Perl and SQL Databases
Perl offers a module for standardized access to SQL databases like MySQL. We will discuss the details after the break, but here is a sample Perl program with comments that illustrates the general principle of executing an SQL query:

#!/usr/bin/perl

use strict;

use warnings;

Import the DataBase Interface module

use DBI;

Define connection parameters

my $db_name = "DBI:mysql:testuser";

my $db_user = "testuser";

my $db_pass = "XXXX";

Define the SQL query to execute

my $db_query = "select id,first,last from people";

Connecting to the DB

my $dbh = DBI->connect($db_name, $db_user, $db_pass);

Preparing the SQL query

my $query = $dbh->prepare($db_query);

#Executing the query

$query->execute;

Iterating through the query result row by row

while (my @row = $query->fetchrow)

{

 my ($id, $first, $last) = @row;

 print "id = $id, name = $first $last\n";

}
