Bourne Shell Programming Overview

These are the contents of a shell script called display:

 cat display
 # This script displays the date, time, username and

 # current directory.

 echo "Date and time is:"

 date

 echo

 echo "Your username is: `whoami` \\n"

 echo "Your current directory is: \\c"

 pwd

The first two lines beginning with a hash (#) are comments and are not interpreted by the shell. Use comments to document your shell script; you will be surprised how easy it is to forget what your own programs do!

The backquotes (`) around the command whoami illustrate the use of command substitution.

The \\n is an option of the echo command that tells the shell to add an extra carriage return at the end of the line. The \\c tells the shell to stay on the same line. See the man page for details of other options.

The argument to the echo command is quoted to prevent the shell interpreting these commands as though they had been escaped with the \\ (backslash) character.

The shell also provides you with a programming environment with features similar to those of a high level programming languages.

Passing arguments to the shell

Shell scripts can act like standard UNIX commands and take arguments from the command line.

Arguments are passed from the command line into a shell program using the positional parameters $1 through to $9. Each parameter corresponds to the position of the argument on the command line.

The positional parameter $0 refers to the command name or name of the executable file containing the shell script.

Only nine command line arguments can be accessed, but you can access more than nine using the shift command.

All the positional parameters can be referred to using the special parameter $*. This is useful when passing filenames as arguments. For example:

 cat printps
 # This script converts ASCII files to PostScript

 # and sends them to the PostScript printer ps1

 # It uses a local utility "a2ps"

 a2ps $* | lpr -Pps1

 printps elm.txt vi.ref msg
This processes the three files given as arguments to the command printps.

Handling shell variables

The shell has several variables which are automatically set whenever you login.

The values of some of these variables are stored in names which collectively are called your user environment.

Any name defined in the user environment, can be accessed from within a shell script. To include the value of a shell variable into the environment you must export it.

Special shell variables

There are some variables which are set internally by the shell and which are available to the user:

$1 - $9 these variables are the positional parameters.

$0 the name of the command currently being executed.

$# the number of positional arguments given to this

 invocation of the shell.

$? the exit status of the last command executed is

 given as a decimal string. When a command

 completes successfully, it returns the exit status

 of 0 (zero), otherwise it returns a non-zero exit

 status.

$$ the process number of this shell - useful for

 including in filenames, to make them unique.

$! the process id of the last command run in

 the background.

$- the current options supplied to this invocation

 of the shell.

$* a string containing all the arguments to the

 shell, starting at $1.

$@@ same as above, except when quoted.

Notes

· $* and $@@ when unquoted are identical and expand into the arguments.

· "$*" is a single word, comprising all the arguments to the shell, joined together with spaces. For example '1 2' 3 becomes "1 2 3".

· "$@@" is identical to the arguments received by the shell, the resulting list of words completely match what was given to the shell. For example '1 2' 3 becomes "1 2" "3"
Reading user input

To read standard input into a shell script use the read command. For example:

 echo "Please enter your name:"

 read name

 echo "Welcome to Edinburgh $name"

This prompts the user for input, assigns this to the variable name and then displays the value of this variable to standard output. If there is more than one word in the input, each word can be assigned to a different variable. Any words left over are assigned to the last named variable. For example:

 echo "Please enter your surname\n"

 echo "followed by your first name: \c"

 read name1 name2

 echo "Welcome to Glasgow $name2 $name1"

Conditional statements

Every Unix command returns a value on exit which the shell can interrogate. This value is held in the read-only shell variable $?. A value of 0 (zero) signifies success; anything other than 0 (zero) signifies failure.

The if statement

The if statement uses the exit status of the given command and conditionally executes the statements following. The general syntax is:

 if test
 then

 commands (if condition is true)

 else

 commands (if condition is false)

 fi

then, else and fi are shell reserved words and as such are only recognised after a newline or ; (semicolon). Make sure that you end each if construct with a fi statement. if statements may be nested:

 if ...

 then ...

 else if ...

 ...

 fi

 fi

The elif statement can be used as shorthand for an else if statement. For example:

 if ...

 then ...

 elif ...

 ...

 fi

The && operator

You can use the && operator to execute a command and, if it is successful, execute the next command in the list. For example:

 cmd1 && cmd2
cmd1 is executed and its exit status examined. Only if cmd1 succeeds is cmd2 executed. This is a terse notation for:

 if cmd1
 then

 cmd2
 fi

The || operator

You can use the || operator to execute a command and, if it fails, execute the next command in the command list. For example:

 cmd1 || cmd2
cmd1 is executed and its exit status examined. If cmd1fails then cmd2 is executed. This is a terse notation for:

 cmd1
 if
test $? -ne 0

 then

 cmd2
 fi

Testing for files and variables with the test command

The shell uses a command called test to evaluate conditional expressions. Full details of this command can be found in the test manual page. For example:

 if test ! -f $FILE

 then

 if test "$WARN" = "yes"

 then

 echo "$FILE does not exist"

 fi

 fi

First, we test to see if the filename specified by the variable $FILE exists and is a regular file. If it does not then we test to see if the variable $WARN is assigned the value yes, and if it is a message that the filename does not exist is displayed.

The case statement

case is a flow control construct that provides for multi-way branching based on patterns. Program flow is controlled on the basis of the wordgiven. This word is compared with each pattern in order until a match is found, at which point the associated command(s) are executed.

 case word in

 pattern1) command(s)
 ;;

 pattern2) command(s)
 ;;

 patternN) command(s)
 ;;

 esac

When all the commands are executed control is passed to the first statement after the esac. Each list of commands must end with a double semi-colon (;;). A command can be associated with more than one pattern. Patterns can be separated from each other by a | symbol. For example:

 case word in

 pattern1|pattern2) command
 ...

;;

Patterns are checked for a match in the order in which they appear. A command is always carried out after the first instance of a pattern. The * character can be used to specify a default pattern as the * character is the shell wildcard character.

The for statement

The for loop notation has the general form:

 for var in list-of-words
 do

 commands
 done

commands is a sequence of one or more commands separated by a newline or ; (semicolon). The reserved words do and done must be preceded by a newline or ; (semicolon). Small loops can be written on a single line. For example:

 for var in list; do commands; done

The while and until statements

The while statement has the general form:

 while command-list1
 do

 command-list2
 done

The commands in command-list1 are executed; and if the exit status of the last command in that list is 0 (zero), the commands in command-list2 are executed. The sequence is repeated as long as the exit status of command-list1 is 0 (zero).

The until statement has the general form:

 until command-list1
 do

 command-list2
 done

This is identical in function to the while command except that the loop is executed as long as the exit status of command-list1 is non-zero.

The exit status of a while/until command is the exit status of the last command executed in command-list2. If no such command list is executed, a while/until has an exit status of 0 (zero).

The break and continue statements

It is often necessary to handle exception conditions within loops. The statements break and continue are used for this. The break command terminates the execution of the innermost enclosing loop, causing execution to resume after the nearest done statement. To exit from n levels, use the command:

 break n
This will cause execution to resume after the done n levels up. The continue command causes execution to resume at the while, until or for statement which begins the loop containing the continue command. You can also specify an argument n|FR to continue which will cause execution to continue at the n|FRth enclosing loop up.

Doing arithmetic

The shell does not have any arithmetic features built in and so you have to use the expr command. Details are in the expr manual page.

Forcing evaluation of commands

Another built-in function is eval which takes the arguments on the command line and executes them as a command. For example:

 #!/bin/sh

 echo "enter a command:"

 read command

 eval $command

Controlling when to exit a shell script

The exit statement will exit the current shell script. It can be given a numeric argument which is the script's exit status. If omitted the exit status of the last run command is used. 0 (zero) signifies success, non-zero signifies failure. For example:

 #!/bin/sh

 if [$# -ne 2]

 # "$#" is number of parameters- here we test

 # whether it is not equal to two

 then

 echo "Usage $0 \<file1\> \<file2\>"
not two parameters

 # so print message

 exit 2

and fail ($0 is

 # name of command).

 fi

 ...<rest of script>

This script is supposed to take two positional arguments. It will exit with status 2 (error) rather than 0 (success) if it is not called with two parameters.

Getting further information

You can get more information from the manual page for the Bourne shell (sh).

