CSAS 1112 EE Practice Exam

Please answer, in your own words, the following questions:

· What is the difference between a "Win32 Console Application" and a "Win32 Application" in Visual C++?

Win32 Console App is text-based and "linear", while a Win32 App. is GUI-based and event-driven.

· Explain what a class is, and what field and methods are

A class defines a new data type in C++ that can include fields and methods. Fields are used to store data, while methods are used to perform operations

· Define a Queue, a Stack, and a List

A List is a sequential structure that supports the operations "add", "remove", "get", and "size" at a minimum. A Queue is a FIFO structure that supports the operations "enqueue", "dequeue", and "peek". A Stack is a LIFO structure that supports the operations "push", "pop", and "peek".

· What does FIFO and LIFO mean

FIFO: First-In, First-Out

LIFO: Last-In, First-Out

· What, if anything, is the difference between arrays and objects ?

An object can store elements of different types and contains methods to perform operations. An array can only store elements of the same type and does not contain any methods.

· What, if anything, is the difference between an array and a list

Array has no methods, List has methods. Array is not dynamics, List is dynamic

· What do the keywords new and delete accomplish

New requests and allocates memory from the operating system at runtime. Delete returns allocated memory to the operating system.

Please answer true or false to the following questions:

· It is possible to include an array as a field for an object. TRUE

· It is possible to use objects as elements of an array. TRUE
· Objects can have fields of the same as well as of different types TRUE

· Arrays can have elements of the same as well as of different types FALSE
· A pointer always uses the same amount of memory, regardless of the type it is pointing to.TRUE
· Suppose the characters 'b', 'e', 'r', 't' are pushed into a stack A, in this order. Then a character is popped from stack A and inserted into a queue B until all characters from stack A have been popped (and subsequently been inserted into queue B). Finally, all characters are retrieved from queue B. The result will spell 'treb'. TRUE
· To implement a List data structure, you must use an array. FALSE
· Of the data structures List, Queue, and Stack, the "Stack" is most closely related to an array. FALSE
· A List is a special case of a Stack FALSE
· To implement a Queue, we can simply use a List class and rename the insert and retrieve operations to "enqueue" and "dequeue". FALSE
In the following C++ segment, circle and explain any errors you see. The errors could be due to syntax errors, run-time errors, or invalid references and assignments. Also, you should consider it an error if function or method is called under invalid assumptions. If the code calls for a cout statement, list the output (if possible).

#include <iostream.h>

#include "Stack.h" // as defined in class

#include "Queue.h" // as defined in class

class Person

{

 private:

int id;

 public:

setID(int);

}

int main(void)

{
Stack S;

Queue Q;

Person P;

double *px;

double x;

S.push(10);

S.push(20);

Q.enqueue(10);

Q.enqueue(20);

cout << S.pop(); Prints 20

cout << Q.dequeue(); Prints 10

cout << S.pop(); Prints 10

cout << Q.dequeue(); Prints 20

cout << S.pop(); ERROR (stack is empty)

cout << Q.dequeue(); ERROR (queue is empty)

Init(P); ERROR (no Init method defined)

P.id = 1007;
 ERROR (id is a private field of Person)

P.setID(1007);

px = 8.6; ERROR

x = 9.5;

*px = 10.0;

*x = *px; ERROR

}

In the following C++ segment, circle and explain any errors you see. The errors could be due to syntax errors, run-time errors, or invalid references and assignments. Also, you should consider it an error if function or method is called under invalid assumptions. If the code calls for a cout statement, list the output (if possible).

#include <iostream.h>

class Node

{

 public:

int data;

Node *next;

};

int main(void)

{

 int *px, *py;

 int x, y;

 Node *p, *q, *r;

 x = 5;

y = -3;

*px = 9;

py = 10; ERROR

*x = *px; ERROR

x = *px;

x = px; ERROR

py = &y;

y = &x; ERROR

y = *px;

p = new Node();

q = new Node();

r = new Node();

 p->data = 1;

q->data = 2;

r->data = 3;

 p->next = q;

q->next = r;

r->next = p;

cout << *px << x << py << *py << q->next << endl;

cout << p->next->next ->next->data << endl; Prints 1

delete q;

cout << p->next->next->next->data << endl; ERROR (node deleted)

return 0;

}

Write some code segments for the following situation: Insert a node into a double-linked list, as indicated in the picture below. You do not have to provide a complete function or class, nor do you need to worry about special cases such as inserting the first node. Note: each node has three fields, a prior and next pointer, and a data field.

[image: image1.emf]
Node *p = new Node("B");

p->next = current;

p->prev = current.prev;

current.prev.next = p;

current.prev = p;

current = p;

Write some code segment for the following situation: Delete the current node from a double-linked list, as indicated in the picture below. You do not have to provide a complete method or class, nor do you need to worry about special cases such as deleting the last, first, or only Node in a list. Note: each node has three fields, prior, next, and data.

	
[image: image2.wmf]current

A

C

X

B

B

Figure: List before deleting Node with String "X"
	
[image: image3.wmf]current

A

C

B

Figure: List after deleting Node with String "X"

current.prev.next = current.next;

current.next.prev = current.prev;

Node *p = current;

current = current.prev;

delete p;

Write the code for the indicated methods of the specified classes. Note that you can assume the Node class has been defined as usual already, i.e.

typedef int Element;
class Node
{ public:
 Element data;
 Node *next;
 Node(void);
 Node(Element);
};
Define the Stack and Queue class, but only the class headers, not the implementations of the various methods involved.

class Stack

{ private:

Node *top;

 public:

Stack();

void push(Element);

Element pop();

Element peek();

};

class Queue

{ private:

Node *head;

Node *tail;

 public:

Queue();

void enqueue(Element);

Element dequeue();

Element peek();

};

For the Stack class, write the code for an isEmpty method that returns 1 (= true) if the stack is empty, and 0 (= false) if the stack is not empty). The method is defined as:

int isEmpty(void)
{ return (top == 0);
}

For the Stack class, write the complete code for pop, defined as:

Element pop(void)
{ Node *p = top;
 Element e = top->data;
 top = top->next;
 delete p;
 return e;
}

For the Stack class, write the complete code for push, defined as:

void push(Element e)
{ Node *p = new Node(e);
 p->next = top;
 top = p;
}

For the Queue class, write the complete code for enqueue, defined as:

void enqueue(Element e)
{ Node *p = new Node(e);
 if (head == 0)
 head = tail = p;
 else
 { tail->next = p;
 tail = p;
 }
}

Make sure you check that your code works for an empty as well as a non-empty queue, and for a Stack that contains only one element.

For the Queue class, write the complete code for dequeue, defined as:

Element dequeue(void)
{ Node *p = head;
 Element e = head->data;
 if (head == tail)
 { head = 0;
 tail = 0;
 }
 else
 { head = head->next;
 }
 delete p;
 return e;
}

Make sure you check that your code works for an empty as well as a non-empty queue/stack

For the Queue class, write the complete code for the peek method, defined as:

public Element peek()
{ return head->data;
}

Add a method sizeOf to the Stack class (or the Queue class) that returns the number of nodes currently in the stack.

Suppose a Stack and a Queue class have been defined, and implement the following public methods:

	
	class Stack

{

 public: Stack(void);

 public: void push(Element);

 public: Element pop(void);

 public: int sizeOf(void);

 public: int isEmpty();

 public: int isFull();

};
	class Queue

{

 public: Queue(void);

 public: void insert(Element);

 public: Element retrieve(void);

 public: int sizeOf(void);

 public: int isEmpty();

 public: int isFull();

};

Write a function NotEqual that checks whether a Stack and a Queue are different, as in the prototype: (THIS WOULD BE FOR EXTRA CREDIT)
int NotEqual(Stack S, Queue Q)

{

if (S.sizeOf() != Q.sizeOf())

return 1;

else

{
while (S.sizeOf() > 0)

{

Element e1 = S.pop();

Element e2 = Q.dequeue();

if (e1 != e2)

return 1;

}

return 0;

}

}

Note that you can not assume that the Stack and the Queue initially have the same number of elements. A possible algorithm might be:

· check whether the Stack and the Queue have the same size. If so, return true (they are different). Else do the following in a loop

· retrieve an element from the Stack, and one element from the Queue.

· compare the two elements

· loop should stop if either the two elements are not the same, or the Stack is empty

· return the appropriate integer (0 for false, i.e. they are not different, or 1 for yes, i.e. they are different)

Use a Stack, a Queue, and the above function NotEqual function to write a code segment that checks whether a given string is a Palindrome. Note that you can attempt this question even if you did not write the code for part (a). Simply assume that the function in part (a) will work correctly for your code segment.

We assume that the "string" to check is stored in an array of characters "check" ….

char check[7];

check[0] = 'r';

check[1] = 'a';

check[2] = 'c';

check[3] = 'e';

check[4] = 'c';

check[5] = 'a';

check[6] = 'r';

Stack S;

Queue Q;

for (int i = 0; i < 7; i++)

{

S.push(check[i]);

Q.enqueue(check[i]);

}

if (NotEqual(S, Q))

cout << "Not a palindrome !" << endl;

else

cout << "Got a palindrome !" << endl;

Suppose you were to purchase software to accomplish a certain task, and two vendors offer their products, each of which accomplishes the task just fine. Vendor A's software uses an O(n2) algorithm, vendor B's software is O(n log(n)). Which one do you purchase?

We'd purchase the product from vendor B, since O(n log(n)) requires fewer operations than O(n^2).

Create a complete Triangle class (modeling right triangles) with four fields, one double for the base, one double for the height, one double for the hypotenuse, and one double for area. Include the following methods in your class:

Triangle()
// the constructor
void setBase(double);
// sets the base to the input value

void setHeight(double);
// sets the height to the input value

void computeHypotenuse();
// computes the hypotenuse of the triangle

void computeArea();
// computes the area of the triangle
void display();
// to display the information in the current object

Then write a test program that uses two triangles, one with base and height 1 and the other with base and height 2, and prints out the complete information about these triangles (including hypotenuse and area).

Class Triangle.h

#ifndef TRIANGLE

#define TRIANGLE

class Triangle

{

private:

double base;

double height;

double area;

double hypotenuse;

public:

Triangle();

void setBase(double);

void setHeight(double);

void computeHypotenuse();

void computeArea();

void display();

};

#endif

Class Triangle.cpp

#include "Triangle.h"

#include <math.h>

#include <iostream.h>

Triangle::Triangle()

{
base = height = area = hypotenuse = 0;

}

void Triangle::setBase(double _base)

{
base = _base;

}

void Triangle::setHeight(double _height)

{
height = _height;

}

void Triangle::computeHypotenuse()

{
hypotenuse = sqrt(base * base + height * height);

}

void Triangle::computeArea()

{
area = 1.0 / 2.0 * base * height;

}

void Triangle::display()

{
cout << "Triangle: " << endl;

cout << "\t Base: " << base << endl;

cout << "\t Height: " << height << endl;

cout << "\t Hypotenuse: " << hypotenuse << endl;

cout << "\t Area: " << area << endl;

}
Test Program:

int main(void)

{

Triangle t1;

Triangle t2;

t1.setBase(1.0);

t1.setHeight(1.0);

t2.setBase(2.0);

t2.setHeight(2.0);

t1.computeArea();

t1.computeHypotenuse();

t2.computeArea();

t2.computeHypotenuse();

t1.display();

t2.display();

return 0;

}

Please write code segments to solve the following tasks. Also provide a small test program that checks every method at least once in a complete program.

a)
Create a Rectangle class with three fields, one double for the width, one double for the height, and one double for the area. Include the following methods in your class:

void input(void) - prompts the user for the numbers and stores them in the corresponding fields

void display(void) - to display the information in the current object

b)
Modify your class so that the input method only asks the user for the width and height, but not the area. Then add a new method void computeArea(void) that computes the area and stores the answer in the correct field. The display method should remain unchanged. Make sure that in your main program you are using the new method correctly !

When you create a MS Visual C++ Win32 Application, there is a "class wizard" available to help you. It might look as in the picture below.

[image: image4.png]MFC ClassWizard

MessageMaps | MemberVariables | Automation | ActveX Events | Giasslifo |

Project

. \dunky\JunkyDlg h, ..\ Junky\JunkyDIg cpp

Object[Ds:

IDOK

Memberfunctions

Class name: Add Class.. v
ClunkyDlg -
el g eileig)
Messages: D=2 = e
CJunkyDlr BN_CLICKED
RIS A |51 DOUGLECUCKED [Elicai

V| DoDateExchange
W OninitDislog

W OnPaint

W OnQueryDragicon
W OnSysCammand

Description

ON_WM_INITDIALOG
ON_WM_PAINT
ON_WM_QUERYDRAGICON
ON_WM_SYSCOMMAND

· What can be done at the "Message Maps" tab, and what is the impact on your program?

The message map tab associates methods with GUI elements such as buttons. It determines which method is called for what event (like a button click). The Message Map wizard will add methods to your class.

· What can be done at the "Member Variables" tab, and what is the impact on your program?

The Member Variables tabs adds fields to your class and lets you associate fields with existing GUI elements such as CEdit or CStatic. You can then use the data contained in those GUI elements using the field names.

· How do you define GUI elements when creating a Dialog-based Win32 Application using MS Visual C++?

Visually by dragging and dropping in the "resource editor".

When you create a MS Visual C++ Win32 Application, list at least three MFC classes that are available to you, and describe their purpose.

· CButton: looks like a button and can react to button clicks

· CEdit: an input field to store a CString

· CStatic: a non-editable field to display some text

· CListBox: a "list", i.e. a scrollable list of strings from which a user can select one (or more)

· CDialog: a class representing a basic "Dialog" window

_986013767.unknown

_986013589.unknown

