CSAS 1112 Practice Exam

An answer key will be posted tomorrow evening - additional questions will be posted tomorrow morning - please check this web site again!

Please answer, in your own words, the following questions:

· What is the AWT, and how does AWT-based programming differ from "text-based" programs?

· List at least three classes in the AWT, and briefly describe their functionality.

· Explain what a class is, and what field and methods are.

· What is overloading and overriding?

· What is inheritance?

· What does "public" and "private" mean?

· What does "static" mean? What does "abstract" mean?

· Define a Queue, a Stack, and a List

· What does FIFO and LIFO mean

· What, if anything, is the difference between arrays and objects ?

· What, if anything, is the difference between an array and a list

· What does the keyword new accomplish?

Please answer true or false to the following questions:

· It is possible to include an array as a field for an object.
· It is possible to use objects as elements of an array.

· Overloading requires inheritance.

· Overriding requires inheritance.

· You can overload a method by giving it different types of input parameters.

· You can overload a method by giving it different return types.

· When a class extends another class, it can use all private and public fields/methods of the superclass.

· Objects can have fields of the same as well as of different types
· Arrays can have elements of the same as well as of different types

· Suppose the characters 'b', 'e', 'r', 't' are pushed into a stack A, in this order. Then a character is popped from stack A and inserted into a queue B until all characters from stack A have been popped (and subsequently been inserted into queue B). Finally, all characters are retrieved from queue B. The result will spell 'treb'.

· To implement a List data structure, you must use an array.

· Of the data structures List, Queue, and Stack, the "Stack" is most closely related to an array.

· A List is a special case of a Stack.

· To implement a Queue, we can simply use a List class and rename the insert and retrieve operations to "enqueue" and "dequeue".

In the following Java code segment, circle and explain any errors you see. The errors could be due to syntax errors, run-time errors, or invalid references and assignments. Also, you should consider it an error if function or method is called under invalid assumptions. If the code calls for a System.out.println statement, list the output (if possible).

public class Person

{ private int id;

 public Person(int _id)

 { ... }

 public void setID(int _id)

 { ... }

}

public class Node

{ public int data;

 public Node *next;

};

public static void main(String args[])

{
Stack S = new Stack();

Queue Q = new Stack();

Person P = new Person();

S.push(10);
Q.enqueue(10);

S.push(20);
Q.enqueue(20);

System.out.println(S.pop());

System.out.println(Q.dequeue());

System.out.println(S.pop());

System.out.println(Q.dequeue());

System.out.println(Q.dequeue());

p = new Person(1);

Init(P);

P.id = 1007;

P.setID(1007);

Node p = new Node(), q =new Node(), r = new Node();

p.data = 1;

q.data = 2;

r.data = 3;

p.next = q;

q.next = r;

r.next = p;

cout << p->next->next ->next->data << endl;
}

Write some code segments for the following situation: Insert a node into a double-linked list, as indicated in the picture below. You do not have to provide a complete function or class, nor do you need to worry about special cases such as inserting the first node. Note: each node has three fields, a prior and next pointer, and a data field.

[image: image1.emf]
Write some code segment for the following situation: Delete the current node from a double-linked list, as indicated in the picture below. You do not have to provide a complete method or class, nor do you need to worry about special cases such as deleting the last, first, or only Node in a list. Note: each node has three fields, prior, next, and data.

	
[image: image2.wmf]current

A

C

X

B

B

Figure: List before deleting Node with String "X"

	
[image: image3.wmf]current

A

C

B

Figure: List after deleting Node with String "X"

Write the code for the indicated methods of the specified classes. Note that you can assume the Node class has been defined as usual already, i.e.

public class Node
{ public Object data;
 public Node next;
 public Node(void){ .. }
 public Node(Object _data) { .. }
}
Define the Stack and Queue class, but only the method headers, not the implementations of the various methods involved.

For the Stack class, write the code for an isEmpty method that returns true if the stack is empty, and false if the stack is not empty. The method is defined as:

public boolean isEmpty()

For the Stack class, write the complete code for pop, defined as:

public Object pop()
For the Stack class, write the complete code for push, defined as:

public void push(Object o)
For the Queue class, write the complete code for enqueue, defined as:

public void enqueue(Object o)
Make sure you check that your code works for an empty as well as a non-empty queue, and for a Stack that contains only one element.

For the Queue class, write the complete code for dequeue, defined as:

public Object dequeue()
Make sure you check that your code works for an empty as well as a non-empty queue/stack

For the Queue class, write the complete code for the peek method. Do the same for the Stack class.

Add a method sizeOf to the Stack class (or the Queue class) that returns the number of nodes currently in the stack. Do it

(a) without modifying any existing method or class

(b) any way you want to do it

Suppose a Stack and a Queue class have been defined, and implement the following public methods:

	
	public class Stack

{

 public Stack();

 public void push(Object o);

 public Object pop(void);

 public int sizeOf(void);

 public boolean isEmpty();

}
	public class Queue

{

 public Queue(void);

 public void insert(Object o);

 public Object retrieve(void);

 public int sizeOf(void);

 public boolean isEmpty();

}

Write a function notEqual that checks whether a Stack and a Queue are different, as in the prototype:

public boolean notEqual(Stack S, Queue Q)

{ /* your code here */ }

Note that you can not assume that the Stack and the Queue initially have the same number of elements. A possible algorithm might be:

· check whether the Stack and the Queue have the same size. If so, return true (they are different). Else do the following in a loop

· retrieve an element from the Stack, and one element from the Queue.

· compare the two elements

· loop should stop if either the two elements are not the same, or the Stack is empty

· return the appropriate integer (0 for false, i.e. they are not different, or 1 for yes, i.e. they are different)

Use a Stack, a Queue, and the above function notEqual function to write a code segment that checks whether a given string is a Palindrome. Note that you can attempt this question even if you did not write the code for part (a). Simply assume that the function in part (a) will work correctly for your code segment.

Use a Stack and/or a Queue to create a method checkParens that takes as input a String representing some expression with parenthesis and returns true if the parenthesis match, false otherwise. For example:

checkParens("((a + b) * (c + d) - 7)*8")
would return true, while

checkParens("(a + b) * c)")
would return false

Use a Stack and/or a Queue to convert an integer to a String of 0's and 1's such that the 0's and 1's represent the given integer as a binary number, as discussed in class.

Suppose you were to purchase software to accomplish a certain task, and two vendors offer their products, each of which accomplishes the task just fine. Vendor A's software uses an O(n2) algorithm, vendor B's software is O(n log(n)). Which one do you purchase?

MORE "Big-O" PROBLEMS LATER (tomorrow morning)

Create the following hierarchy of classes:

· a "Person" class with fields for a name (type String) and an email address (type String). It should contain two constructors: one without input, a second one with input _name of type String and _email of type String to appropriately set the name and email address. You also need to provide a "setName", "setEmail", and a "showPerson" method.

· a "OfficePerson" class that extends "Person". It should inherit the fields from Person as well as define one additional field "phone" of type int to hold a 4-digit phone extension number. Override inherited methods only when necessary

· a "Test" class that tests the two "Person" and "OfficePerson" classes by instantiating appropriate objects.

MORE PROBLEMS LATER (tomorrow morning)
_986013767.unknown

_986013589.unknown

