CSAS 1112 Practice Exam

Please answer, in your own words, the following questions:

· What is the AWT, and how does AWT-based programming differ from "text-based" programs?

AWT = Abstract Windows Toolkits, contains classes for GUI (Graphical User Interface) programming. GUI programming is "event driven" while text based programming is "linear".

· List at least three classes in the AWT, and briefly describe their functionality.

Button: GUI element that resembles a button, contains a label, and can generate action events

List: a scrollable list of strings in a box where the user can select one or more items by clicking

Label: a non-editable text field

TextField: an editable field where a user can type in information

· Explain what a class is, and what field and methods are.

A class is the fundamental concept of Java, used to defined new types and as a blueprint to instantiate new objects. Comprised of two parts, fields and methods. Fields are used to store data, methods are used to perform actions or to manipulate data.

· What is overloading and overriding?

Overloading means to add a version of a method that has the same method name and return type but different input lists. Overriding means to redefine a method that is inherited by a class.

· What is inheritance?

Inheritance means that one class inherits access to non-private fields and methods of another class.

· What does "public" and "private" mean?

Public means that everyone can access a field or method, private means that a field or method can be accessed only by objects of the class that owns the private members.

· What does "static" mean? What does "abstract" mean?

Static fields are shared across objects, i.e. they exist only once, regardless of how many objects are instantiated. Static methods are methods that can be used by the classname without instantiating any objects. Abstract methods are methods without a method body. They are useful in a hierarchy of classes.

· Define a Queue, a Stack, and a List

A Queue is a sequential FIFO structure. A Stack is a sequential LIFO structure. A list is a sequential structure that supports "add", "remove", "get", and "size" methods to insert, retrieve, or remove elements at any position in the list.

· What does FIFO and LIFO mean

FIFO = First in, First out (a queue, for example)

LIFO = Last in, first out (a stack, for example)

· What, if anything, is the difference between arrays and objects ?

Arrays don't have methods and only one field, objects can have any number of fields and methods. Objects can store data of different types, arrays can store data of the same type only.

· What, if anything, is the difference between an array and a list

A list is dynamic (grows and shrinks), an array has a fixed size. A list has methods, an array does not.

· What does the keyword new accomplish?

It instantiates a new object, allocates the necessary memory for the object, and returns a reference to the newly created object

Please answer true or false to the following questions:

· It is possible to include an array as a field for an object. TRUE

· It is possible to use objects as elements of an array. TRUE
· Overloading requires inheritance.FALSE
· Overriding requires inheritance. TRUE
· You can overload a method by giving it different types of input parameters. TRUE
· You can overload a method by giving it different return types.FALSE
· When a class extends another class, it can use all private and public fields/methods of the superclass. FALSE
· Objects can have fields of the same as well as of different types TRUE

· Arrays can have elements of the same as well as of different types FALSE
· Suppose the characters 'b', 'e', 'r', 't' are pushed into a stack A, in this order. Then a character is popped from stack A and inserted into a queue B until all characters from stack A have been popped (and subsequently been inserted into queue B). Finally, all characters are retrieved from queue B. The result will spell 'treb'. TRUE
· To implement a List data structure, you must use an array. FALSE
· Of the data structures List, Queue, and Stack, the "Stack" is most closely related to an array. FALSE
· A List is a special case of a Stack. FALSE
· To implement a Queue, we can simply use a List class and rename the insert and retrieve operations to "enqueue" and "dequeue". FALSE
In the following Java code segment, circle and explain any errors you see. The errors could be due to syntax errors, run-time errors, or invalid references and assignments. Also, you should consider it an error if function or method is called under invalid assumptions. If the code calls for a System.out.println statement, list the output (if possible).

There are a few unintended mistakes here, sorry …

public class Person

{ private int id;

 public Person(int _id)

 { ... }

 public void setID(int _id)

 { ... }

}

public class Node

{ public int data;

 public Node *next; // The "star" is out-of-place

};

public static void main(String args[])

{
Stack S = new Stack();

Queue Q = new Stack();

Person P = new Person();

S.push(10);
Q.enqueue(10);

S.push(20);
Q.enqueue(20);

System.out.println(S.pop()); // shows 20

System.out.println(Q.dequeue()); // shows 10

System.out.println(S.pop()); // shows 10

System.out.println(Q.dequeue()); // shows 20

System.out.println(Q.dequeue()); // ERROR

p = new Person(1);

Init(P); // ERROR

P.id = 1007; // ERROR (id is private)

P.setID(1007);

Node p = new Node(), q =new Node(), r = new Node();

p.data = 1;

q.data = 2;

r.data = 3;

p.next = q;

q.next = r;

r.next = p;

cout << p->next->next ->next->data << endl;

// "cout" is not known, but if it did say "System.out.println" instead, the output

// would be '1'
}

Write some code segments for the following situation: Insert a node into a double-linked list, as indicated in the picture below. You do not have to provide a complete function or class, nor do you need to worry about special cases such as inserting the first node. Note: each node has three fields, a prior and next pointer, and a data field.

[image: image1.emf]
Node p = new Node("B");

p.next = current;

p.prior = current.prior

current.prior.next = p;

current.prior = p;

current = p;

Write some code segment for the following situation: Delete the current node from a double-linked list, as indicated in the picture below. You do not have to provide a complete method or class, nor do you need to worry about special cases such as deleting the last, first, or only Node in a list. Note: each node has three fields, prior, next, and data.

	
[image: image2.wmf]current

A

C

X

B

B

Figure: List before deleting Node with String "X"

	
[image: image3.wmf]current

A

C

B

Figure: List after deleting Node with String "X"

current.prior.next = current.next;

current.next.prior = current.prior;

current = current.prior;

Write the code for the indicated methods of the specified classes. Note that you can assume the Node class has been defined as usual already, i.e.

public class Node
{ public Object data;
 public Node next;
 public Node(void){ .. }
 public Node(Object _data) { .. }
}
Define the Stack and Queue class, but only the method headers, not the implementations of the various methods involved.

public class Queue

{ private Node head;

 private Node tail;

 public Queue()

 { .. }

 public void enqueue(Object o)

 { .. }

 public Object dequeue()

 { .. }

 public Object peek()

 { .. }

}

public class Stack

{ private Node top;

 public Stack()

 { .. }

 public void push(Object o)

 { .. }

 public Object pop()

 { .. }

 public Object peek()

 { .. }

}
For the Stack class, write the code for an isEmpty method that returns true if the stack is empty, and false if the stack is not empty. The method is defined as:

public boolean isEmpty()
{ return (top == null);
}

For the Stack class, write the complete code for pop, defined as:

public Object pop()
{ Object o = top.data;
 top = top.next;
 return o;
}
For the Stack class, write the complete code for push, defined as:

public void push(Object o)
{ Node p = new Node(o);

 p.next = top;

 top = p;

}
For the Queue class, write the complete code for enqueue, defined as:

public void enqueue(Object o)
{ Node p = new Node(o);
 if (head == null)
 { head = p;
 tail = p;
 }
 else
 { tail.next = p;
 tail = p;
 }
}
Make sure you check that your code works for an empty as well as a non-empty queue, and for a Stack that contains only one element.

For the Queue class, write the complete code for dequeue, defined as:

public Object dequeue()
{ Object o = head.data;
 if (head == tail)
 { head = null;
 tail = null;
 }
 else
 { head = head.next;
 return o;
}
Make sure you check that your code works for an empty as well as a non-empty queue/stack

For the Queue class, write the complete code for the peek method. Do the same for the Stack class.

public Object peek()
{ return head.data;
}

public Object peek()
{ return top.data;
}

Add a method sizeOf to the Stack class (or the Queue class) that returns the number of nodes currently in the stack. Do it

(a) without modifying any existing method or class

public int sizeOf()
{ Node p = top;
 int counter = 0;
 while (p != null)
 { p = p.next;
 counter++;
 }
 return counter;
}

(b) any way you want to do it

· add a "private int size" field

· initialize "size" to 0 in the constructor

· add a line "size++" to the push method

· add a line "size--" to the pop method

· implement the "sizeOf" method simply by saying "return size;"

Suppose a Stack and a Queue class have been defined, and implement the following public methods:

	
	public class Stack

{

 public Stack();

 public void push(Object o);

 public Object pop(void);

 public int sizeOf(void);

 public boolean isEmpty();

}
	public class Queue

{

 public Queue(void);

 public void insert(Object o);

 public Object retrieve(void);

 public int sizeOf(void);

 public boolean isEmpty();

}

Write a function notEqual that checks whether a Stack and a Queue are different, as in the prototype:

public boolean notEqual(Stack S, Queue Q)

{ if (S.sizeOf() != Q.sizeOf())

 return true;

 else

 { while (S.sizeOf() > 0)

 { Object o1 = S.pop();

 Object o2 = Q.dequeue();

 if (o1 != o2) // this should really be (!o1.equals(o2))

 return true;

 }

 return false;

 }

}

Note that you can not assume that the Stack and the Queue initially have the same number of elements. A possible algorithm might be:

· check whether the Stack and the Queue have the same size. If so, return true (they are different). Else do the following in a loop

· retrieve an element from the Stack, and one element from the Queue.

· compare the two elements

· loop should stop if either the two elements are not the same, or the Stack is empty

· return the appropriate integer (0 for false, i.e. they are not different, or 1 for yes, i.e. they are different)

Use a Stack, a Queue, and the above function notEqual function to write a code segment that checks whether a given string is a Palindrome. Note that you can attempt this question even if you did not write the code for part (a). Simply assume that the function in part (a) will work correctly for your code segment.

Assume that exp contains the string to check:

Stack S = new Stack();

Queue Q = new Queue();

for (int i = 0; i < exp.length(); i++)

{ S.push(exp.charAt(i)); // should really be S.push(new Character(exp.charAt(i))

 Q.push(exp.charAt(i)); // should really be Q.enqueue(new Character(exp.charAt(i))

}

if (notEqual(S, Q))

 System.out.println("Not a palindrome");

else

 System.out.println("It is a palindrome");

Use a Stack and/or a Queue to create a method checkParens that takes as input a String representing some expression with parenthesis and returns true if the parenthesis match, false otherwise. For example:

checkParens("((a + b) * (c + d) - 7)*8")
would return true, while

checkParens("(a + b) * c)")
would return false

public boolean checkParens{String exp)
{ Stack S = new Stack();

 for (int i = 0; i < exp.length(); i++)

 { char cc = exp.charAt(i);

 if (cc == '(')

 S.push("(");

 if (exp.charAt(i) == ')')

 { if S.sizeOf() == 0)

 return false;

 else

 cc = S.pop();
 }

 }

 if (S.sizeOf() == 0)

 return true;

 else

 return false;

}

Use a Stack and/or a Queue to convert an integer to a String of 0's and 1's such that the 0's and 1's represent the given integer as a binary number, as discussed in class.

As discussed in class

Suppose you were to purchase software to accomplish a certain task, and two vendors offer their products, each of which accomplishes the task just fine. Vendor A's software uses an O(n2) algorithm, vendor B's software is O(n log(n)). Which one do you purchase?

You would purchase from vendor B since her algorithm requires fewer steps.

Other problems:

What is the "Big-O" order for the following mathematical functions:

[image: image4.wmf])

2

)(

1

(

)

(

2

)

(

1

)

(

3

7

3

)

(

2

2

2

2

2

+

+

=

+

=

-

-

-

=

+

-

=

n

n

n

j

n

n

h

n

n

n

g

n

n

n

f

n

Answer: f is O(n^2), g is O(n^2), h is O(2^n), and j is O(n^4)

What is the order of magnitude (big-O) of the following code segments:

int sum = 0;

for (int i = 0; i < n; i++)

 sum += i;

Answer: O(n)

for (int i = 7; i < n-1; i++)

{ for (int j = -3; j < n; j++)

 System.out.println(i*j);

}

Answer: O(n^2)

for (int i = 7; i < n-1; i++)

 System.out.println(i);

for (int j = -3; j < n; j++)

 System.out.println(j);

Answer: O(n)

public void M(int n)

{ if (n == 1)

 System.out.println(n);

 else

 { M(n-1);

 M(n-1);

 System.out.println(n);

 }

}

Answer: O(2^n)

Create the following hierarchy of classes:

· a "Person" class with fields for a name (type String) and an email address (type String). It should contain two constructors: one without input, a second one with input _name of type String and _email of type String to appropriately set the name and email address. You also need to provide a "setName", "setEmail", and a "showPerson" method.

· a "OfficePerson" class that extends "Person". It should inherit the fields from Person as well as define one additional field "phone" of type int to hold a 4-digit phone extension number. Override inherited methods only when necessary

· a "Test" class that tests the two "Person" and "OfficePerson" classes by instantiating appropriate objects.

public class Person

{ public String name;

 public String email;

 public Person()

 { name = "";

 email ="";

 }

 public Person(String _name, String _email)

 { name = _name;

 email = _email;

 }

 public void setName(String _name)

 { name = _name;

 }

 public void setEmail(String _email)

 { email = _email;

 }

 public void showPerson()

 { System.out.println("NAME: " + name);

 System.out.println("EMAIL: " + email);

 }

}

public class OfficePerson extends Person

{ private int phone;

 public OfficePerson()

 { super();

 phone = 0;

 }

 public OfficePersion(String _name, String _email, int _phone)

 { super(_name, _email);

 phone = _phone;

 }

 public void setPhone(int _phone)

 { phone = _phone;

 }

 public void showPerson()

 { super.showPerson();

 System.out.println("PHONE: " + phone);

 }

}

public class Test

{ public static void main(String args[])

 { Person p = new Person("John Smith", "smith@shu.edu");

 OfficePerson op = new OfficePerson("Jane", "doe@shu.edu", 1234);

 p.showPerson();

 op.showPerson();

 }

}
_986013767.unknown

_1047409332.unknown

_986013589.unknown

